Files
2026-01-01 18:32:10 +08:00

162 lines
5.2 KiB
Markdown

# Easy Dataset
[English](./README.md) | [中文](./README.zh.md)
This service deploys Easy Dataset, a powerful tool for creating fine-tuning datasets for Large Language Models (LLMs). It provides an intuitive interface for uploading domain-specific files, intelligently splitting content, generating questions, and producing high-quality training data for model fine-tuning.
## Services
- `easy-dataset`: The main Easy Dataset application server with built-in SQLite database.
## Environment Variables
| Variable Name | Description | Default Value |
| -------------------------- | ----------------------------------- | ------------- |
| EASY_DATASET_VERSION | Easy Dataset image version | `1.5.1` |
| EASY_DATASET_PORT_OVERRIDE | Host port mapping for web interface | `1717` |
| TZ | System timezone | `UTC` |
Please create a `.env` file and modify it as needed for your use case.
## Volumes
- `easy_dataset_db`: A named volume for storing the SQLite database and uploaded files.
- `easy_dataset_prisma`: (Optional) A named volume for Prisma database files if needed.
## Getting Started
### Quick Start (Recommended)
1. (Optional) Create a `.env` file to customize settings:
```env
EASY_DATASET_VERSION=1.5.1
EASY_DATASET_PORT_OVERRIDE=1717
TZ=Asia/Shanghai
```
2. Start the service:
```bash
docker compose up -d
```
3. Access Easy Dataset at `http://localhost:1717`
### With Prisma Database Mount (Advanced)
If you need to mount the Prisma database files:
1. Initialize the database first:
```bash
# Clone the repository and initialize database
git clone https://github.com/ConardLi/easy-dataset.git
cd easy-dataset
npm install
npm run db:push
```
2. Uncomment the Prisma volume mount in `docker-compose.yaml`:
```yaml
volumes:
- easy_dataset_db:/app/local-db
- easy_dataset_prisma:/app/prisma # Uncomment this line
```
3. Start the service:
```bash
docker compose up -d
```
## Features
- **Intelligent Document Processing**: Supports PDF, Markdown, DOCX, and more
- **Smart Text Splitting**: Multiple algorithms with customizable segmentation
- **Question Generation**: Automatically extracts relevant questions from text
- **Domain Labels**: Builds global domain labels with understanding capabilities
- **Answer Generation**: Uses LLM APIs to generate comprehensive answers and Chain of Thought (COT)
- **Flexible Editing**: Edit questions, answers, and datasets at any stage
- **Multiple Export Formats**: Alpaca, ShareGPT, multilingual-thinking (JSON/JSONL)
- **Wide Model Support**: Compatible with all LLM APIs following OpenAI format
## Usage Workflow
1. **Create a Project**: Set up a new project with LLM API configuration
2. **Upload Documents**: Add your domain-specific files (PDF, Markdown, etc.)
3. **Text Splitting**: Review and adjust automatically split text segments
4. **Generate Questions**: Batch construct questions from text blocks
5. **Create Datasets**: Generate answers using configured LLM
6. **Export**: Export datasets in your preferred format
## Default Credentials
Easy Dataset does not require authentication by default. Access control should be implemented at the infrastructure level (e.g., reverse proxy, firewall rules).
## Resource Limits
The service is configured with the following resource limits:
- **CPU**: 0.5-2.0 cores
- **Memory**: 1-4 GB
These limits can be adjusted in `docker-compose.yaml` based on your workload requirements.
## Security Considerations
- **Data Privacy**: All data processing happens locally
- **API Keys**: Store LLM API keys securely within the application
- **Access Control**: Implement network-level access restrictions as needed
- **Updates**: Regularly update to the latest version for security patches
## Documentation
- Official Documentation: [https://docs.easy-dataset.com/](https://docs.easy-dataset.com/)
- GitHub Repository: [https://github.com/ConardLi/easy-dataset](https://github.com/ConardLi/easy-dataset)
- Video Tutorial: [Bilibili](https://www.bilibili.com/video/BV1y8QpYGE57/)
- Research Paper: [arXiv:2507.04009](https://arxiv.org/abs/2507.04009v1)
## Troubleshooting
### Container Won't Start
- Check logs: `docker compose logs easy-dataset`
- Verify port 1717 is not already in use
- Ensure sufficient system resources
### Database Issues
- For SQLite issues, remove and recreate the volume:
```bash
docker compose down -v
docker compose up -d
```
### Permission Errors
- Ensure the container has write access to mounted volumes
- Check Docker volume permissions
## License
Easy Dataset is licensed under AGPL 3.0. See the [LICENSE](https://github.com/ConardLi/easy-dataset/blob/main/LICENSE) file for details.
## Citation
If this work is helpful, please cite:
```bibtex
@misc{miao2025easydataset,
title={Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM Fine-Tuning Data from Unstructured Documents},
author={Ziyang Miao and Qiyu Sun and Jingyuan Wang and Yuchen Gong and Yaowei Zheng and Shiqi Li and Richong Zhang},
year={2025},
eprint={2507.04009},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.04009}
}
```