Compare commits

...

7 Commits

Author SHA1 Message Date
Sun-ZhenXing
28ed2462af feat: Add Chinese documentation and Docker Compose configurations for DeepTutor and llama.cpp
- Created README.zh.md for DeepTutor with comprehensive features, installation steps, and usage instructions in Chinese.
- Added docker-compose.yaml for DeepTutor to define services, environment variables, and resource limits.
- Introduced .env.example for llama.cpp with configuration options for server settings and resource management.
- Added README.md and README.zh.md for llama.cpp detailing features, prerequisites, quick start guides, and API documentation.
- Implemented docker-compose.yaml for llama.cpp to support various server configurations (CPU, CUDA, ROCm) and CLI usage.
2026-02-01 16:08:44 +08:00
Sun-ZhenXing
e2ac465417 feat: add MoltBot service with configuration files and documentation 2026-01-30 10:12:03 +08:00
Sun-ZhenXing
31bcf0c435 chore: update mineru 2026-01-29 17:37:44 +08:00
Sun-ZhenXing
aeddac52bf Update MinerU, Gitea, InfluxDB, Phoenix, and Selenium configurations
- Bump MinerU version from 2.7.1 to 2.7.2 in .env.example, Dockerfile, README files, and docker-compose.yaml.
- Update Gitea version from 1.25.2-rootless to 1.25.4-rootless in .env.example and docker-compose.yaml.
- Add InfluxDB configuration files including .env.example, README.md, README.zh.md, and docker-compose.yaml with version 2.8.0.
- Bump Phoenix version from 12.28.1-nonroot to 12.31.2-nonroot in .env.example and docker-compose.yaml, and update README files.
- Introduce Selenium standalone configuration with version 144.0-20260120, including .env.example, README.md, README.zh.md, and docker-compose.yaml.
2026-01-25 22:59:55 +08:00
Sun-ZhenXing
32742dc535 feat: add opencode 2026-01-22 10:48:31 +08:00
Sun-ZhenXing
2a010843d1 feat: add FalkorDB, LMDeploy, and Pogocache with configuration files and documentation 2026-01-20 14:18:28 +08:00
Sun-ZhenXing
1c528c0e64 feat: add flowise 2026-01-20 13:10:28 +08:00
67 changed files with 3935 additions and 121 deletions

View File

@@ -1,6 +1,7 @@
{ {
"recommendations": [ "recommendations": [
"yzhang.markdown-all-in-one", "yzhang.markdown-all-in-one",
"DavidAnson.vscode-markdownlint" "DavidAnson.vscode-markdownlint",
"redhat.vscode-yaml"
] ]
} }

View File

@@ -13,6 +13,12 @@
"strings": "off" "strings": "off"
} }
}, },
"[yaml]": {
"editor.formatOnSave": true
},
"[dockercompose]": {
"editor.formatOnSave": true
},
"files.eol": "\n", "files.eol": "\n",
"cSpell.enabled": false "cSpell.enabled": false
} }

View File

@@ -12,7 +12,7 @@ These services require building custom Docker images from source.
| [goose](./builds/goose) | 1.18.0 | | [goose](./builds/goose) | 1.18.0 |
| [IOPaint](./builds/io-paint) | 1.6.0 | | [IOPaint](./builds/io-paint) | 1.6.0 |
| [K3s inside DinD](./builds/k3s-inside-dind) | 0.2.2 | | [K3s inside DinD](./builds/k3s-inside-dind) | 0.2.2 |
| [MinerU vLLM](./builds/mineru) | 2.7.1 | | [MinerU vLLM](./builds/mineru) | 2.7.2 |
## Supported Services ## Supported Services
@@ -34,6 +34,7 @@ These services require building custom Docker images from source.
| [Clash](./src/clash) | 1.18.0 | | [Clash](./src/clash) | 1.18.0 |
| [ClickHouse](./src/clickhouse) | 24.11.1 | | [ClickHouse](./src/clickhouse) | 24.11.1 |
| [Conductor](./src/conductor) | latest | | [Conductor](./src/conductor) | latest |
| [DeepTutor](./apps/deeptutor) | latest |
| [Dify](./apps/dify) | 0.18.2 | | [Dify](./apps/dify) | 0.18.2 |
| [DNSMasq](./src/dnsmasq) | 2.91 | | [DNSMasq](./src/dnsmasq) | 2.91 |
| [Dockge](./src/dockge) | 1 | | [Dockge](./src/dockge) | 1 |
@@ -44,11 +45,13 @@ These services require building custom Docker images from source.
| [Easy Dataset](./apps/easy-dataset) | 1.5.1 | | [Easy Dataset](./apps/easy-dataset) | 1.5.1 |
| [Elasticsearch](./src/elasticsearch) | 8.16.1 | | [Elasticsearch](./src/elasticsearch) | 8.16.1 |
| [etcd](./src/etcd) | 3.6.0 | | [etcd](./src/etcd) | 3.6.0 |
| [FalkorDB](./src/falkordb) | v4.14.11 |
| [Firecrawl](./src/firecrawl) | latest | | [Firecrawl](./src/firecrawl) | latest |
| [Flowise](./src/flowise) | 3.0.12 |
| [frpc](./src/frpc) | 0.65.0 | | [frpc](./src/frpc) | 0.65.0 |
| [frps](./src/frps) | 0.65.0 | | [frps](./src/frps) | 0.65.0 |
| [Gitea Runner](./src/gitea-runner) | 0.2.13 | | [Gitea Runner](./src/gitea-runner) | 0.2.13 |
| [Gitea](./src/gitea) | 1.24.6 | | [Gitea](./src/gitea) | 1.25.4-rootless |
| [GitLab Runner](./src/gitlab-runner) | 17.10.1 | | [GitLab Runner](./src/gitlab-runner) | 17.10.1 |
| [GitLab](./src/gitlab) | 17.10.4-ce.0 | | [GitLab](./src/gitlab) | 17.10.4-ce.0 |
| [GPUStack](./src/gpustack) | v0.5.3 | | [GPUStack](./src/gpustack) | v0.5.3 |
@@ -58,6 +61,7 @@ These services require building custom Docker images from source.
| [Halo](./src/halo) | 2.21.9 | | [Halo](./src/halo) | 2.21.9 |
| [Harbor](./src/harbor) | v2.12.0 | | [Harbor](./src/harbor) | v2.12.0 |
| [HashiCorp Consul](./src/consul) | 1.20.3 | | [HashiCorp Consul](./src/consul) | 1.20.3 |
| [InfluxDB](./src/influxdb) | 2.8.0 |
| [Jenkins](./src/jenkins) | 2.486-lts | | [Jenkins](./src/jenkins) | 2.486-lts |
| [JODConverter](./src/jodconverter) | latest | | [JODConverter](./src/jodconverter) | latest |
| [Kestra](./src/kestra) | latest-full | | [Kestra](./src/kestra) | latest-full |
@@ -69,6 +73,8 @@ These services require building custom Docker images from source.
| [LibreOffice](./src/libreoffice) | latest | | [LibreOffice](./src/libreoffice) | latest |
| [libSQL Server](./src/libsql) | latest | | [libSQL Server](./src/libsql) | latest |
| [LiteLLM](./src/litellm) | main-stable | | [LiteLLM](./src/litellm) | main-stable |
| [llama.cpp](./src/llama.cpp) | server |
| [LMDeploy](./src/lmdeploy) | v0.11.1 |
| [Logstash](./src/logstash) | 8.16.1 | | [Logstash](./src/logstash) | 8.16.1 |
| [MariaDB Galera Cluster](./src/mariadb-galera) | 11.7.2 | | [MariaDB Galera Cluster](./src/mariadb-galera) | 11.7.2 |
| [Memos](./src/memos) | 0.25.3 | | [Memos](./src/memos) | 0.25.3 |
@@ -77,6 +83,7 @@ These services require building custom Docker images from source.
| [Minecraft Bedrock Server](./src/minecraft-bedrock-server) | latest | | [Minecraft Bedrock Server](./src/minecraft-bedrock-server) | latest |
| [MinIO](./src/minio) | 0.20251015 | | [MinIO](./src/minio) | 0.20251015 |
| [MLflow](./src/mlflow) | v2.20.2 | | [MLflow](./src/mlflow) | v2.20.2 |
| [MoltBot](./apps/moltbot) | main |
| [MongoDB ReplicaSet Single](./src/mongodb-replicaset-single) | 8.2.3 | | [MongoDB ReplicaSet Single](./src/mongodb-replicaset-single) | 8.2.3 |
| [MongoDB ReplicaSet](./src/mongodb-replicaset) | 8.2.3 | | [MongoDB ReplicaSet](./src/mongodb-replicaset) | 8.2.3 |
| [MongoDB Standalone](./src/mongodb-standalone) | 8.2.3 | | [MongoDB Standalone](./src/mongodb-standalone) | 8.2.3 |
@@ -93,9 +100,10 @@ These services require building custom Docker images from source.
| [Odoo](./src/odoo) | 19.0 | | [Odoo](./src/odoo) | 19.0 |
| [Ollama](./src/ollama) | 0.12.0 | | [Ollama](./src/ollama) | 0.12.0 |
| [Open WebUI](./src/open-webui) | main | | [Open WebUI](./src/open-webui) | main |
| [Phoenix (Arize)](./src/phoenix) | 12.28.1-nonroot | | [Phoenix (Arize)](./src/phoenix) | 12.31.2-nonroot |
| [Pingora Proxy Manager](./src/pingora-proxy-manager) | v1.0.3 | | [Pingora Proxy Manager](./src/pingora-proxy-manager) | v1.0.3 |
| [Open WebUI Rust](./src/open-webui-rust) | latest | | [Open WebUI Rust](./src/open-webui-rust) | latest |
| [OpenCode](./src/opencode) | 1.1.27 |
| [OpenCoze](./apps/opencoze) | See Docs | | [OpenCoze](./apps/opencoze) | See Docs |
| [OpenCut](./src/opencut) | latest | | [OpenCut](./src/opencut) | latest |
| [OpenList](./src/openlist) | latest | | [OpenList](./src/openlist) | latest |
@@ -106,6 +114,7 @@ These services require building custom Docker images from source.
| [Overleaf](./src/overleaf) | 5.2.1 | | [Overleaf](./src/overleaf) | 5.2.1 |
| [PocketBase](./src/pocketbase) | 0.30.0 | | [PocketBase](./src/pocketbase) | 0.30.0 |
| [Podman](./src/podman) | v5.7.1 | | [Podman](./src/podman) | v5.7.1 |
| [Pogocache](./src/pogocache) | 1.3.1 |
| [Portainer](./src/portainer) | 2.27.3-alpine | | [Portainer](./src/portainer) | 2.27.3-alpine |
| [Portkey AI Gateway](./src/portkey-gateway) | latest | | [Portkey AI Gateway](./src/portkey-gateway) | latest |
| [PostgreSQL](./src/postgres) | 17.6 | | [PostgreSQL](./src/postgres) | 17.6 |
@@ -117,10 +126,11 @@ These services require building custom Docker images from source.
| [Redpanda](./src/redpanda) | v24.3.1 | | [Redpanda](./src/redpanda) | v24.3.1 |
| [Redis Cluster](./src/redis-cluster) | 8.2.1 | | [Redis Cluster](./src/redis-cluster) | 8.2.1 |
| [Redis](./src/redis) | 8.2.1 | | [Redis](./src/redis) | 8.2.1 |
| [Renovate](./src/renovate) | 42.52.5-full | | [Renovate](./src/renovate) | 42.85.4-full |
| [Restate Cluster](./src/restate-cluster) | 1.5.3 | | [Restate Cluster](./src/restate-cluster) | 1.5.3 |
| [Restate](./src/restate) | 1.5.3 | | [Restate](./src/restate) | 1.5.3 |
| [SearXNG](./src/searxng) | 2025.1.20-1ce14ef99 | | [SearXNG](./src/searxng) | 2025.1.20-1ce14ef99 |
| [Selenium](./src/selenium) | 144.0-20260120 |
| [SigNoz](./src/signoz) | 0.55.0 | | [SigNoz](./src/signoz) | 0.55.0 |
| [Sim](./apps/sim) | latest | | [Sim](./apps/sim) | latest |
| [Stable Diffusion WebUI](./apps/stable-diffusion-webui-docker) | latest | | [Stable Diffusion WebUI](./apps/stable-diffusion-webui-docker) | latest |

View File

@@ -12,7 +12,7 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [goose](./builds/goose) | 1.18.0 | | [goose](./builds/goose) | 1.18.0 |
| [IOPaint](./builds/io-paint) | 1.6.0 | | [IOPaint](./builds/io-paint) | 1.6.0 |
| [K3s inside DinD](./builds/k3s-inside-dind) | 0.2.2 | | [K3s inside DinD](./builds/k3s-inside-dind) | 0.2.2 |
| [MinerU vLLM](./builds/mineru) | 2.7.1 | | [MinerU vLLM](./builds/mineru) | 2.7.2 |
## 已经支持的服务 ## 已经支持的服务
@@ -34,6 +34,7 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [Clash](./src/clash) | 1.18.0 | | [Clash](./src/clash) | 1.18.0 |
| [ClickHouse](./src/clickhouse) | 24.11.1 | | [ClickHouse](./src/clickhouse) | 24.11.1 |
| [Conductor](./src/conductor) | latest | | [Conductor](./src/conductor) | latest |
| [DeepTutor](./apps/deeptutor) | latest |
| [Dify](./apps/dify) | 0.18.2 | | [Dify](./apps/dify) | 0.18.2 |
| [DNSMasq](./src/dnsmasq) | 2.91 | | [DNSMasq](./src/dnsmasq) | 2.91 |
| [Dockge](./src/dockge) | 1 | | [Dockge](./src/dockge) | 1 |
@@ -44,11 +45,13 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [Easy Dataset](./apps/easy-dataset) | 1.5.1 | | [Easy Dataset](./apps/easy-dataset) | 1.5.1 |
| [Elasticsearch](./src/elasticsearch) | 8.16.1 | | [Elasticsearch](./src/elasticsearch) | 8.16.1 |
| [etcd](./src/etcd) | 3.6.0 | | [etcd](./src/etcd) | 3.6.0 |
| [FalkorDB](./src/falkordb) | v4.14.11 |
| [Firecrawl](./src/firecrawl) | latest | | [Firecrawl](./src/firecrawl) | latest |
| [Flowise](./src/flowise) | 3.0.12 |
| [frpc](./src/frpc) | 0.65.0 | | [frpc](./src/frpc) | 0.65.0 |
| [frps](./src/frps) | 0.65.0 | | [frps](./src/frps) | 0.65.0 |
| [Gitea Runner](./src/gitea-runner) | 0.2.13 | | [Gitea Runner](./src/gitea-runner) | 0.2.13 |
| [Gitea](./src/gitea) | 1.24.6 | | [Gitea](./src/gitea) | 1.25.4-rootless |
| [GitLab Runner](./src/gitlab-runner) | 17.10.1 | | [GitLab Runner](./src/gitlab-runner) | 17.10.1 |
| [GitLab](./src/gitlab) | 17.10.4-ce.0 | | [GitLab](./src/gitlab) | 17.10.4-ce.0 |
| [GPUStack](./src/gpustack) | v0.5.3 | | [GPUStack](./src/gpustack) | v0.5.3 |
@@ -58,6 +61,7 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [Halo](./src/halo) | 2.21.9 | | [Halo](./src/halo) | 2.21.9 |
| [Harbor](./src/harbor) | v2.12.0 | | [Harbor](./src/harbor) | v2.12.0 |
| [HashiCorp Consul](./src/consul) | 1.20.3 | | [HashiCorp Consul](./src/consul) | 1.20.3 |
| [InfluxDB](./src/influxdb) | 2.8.0 |
| [Jenkins](./src/jenkins) | 2.486-lts | | [Jenkins](./src/jenkins) | 2.486-lts |
| [JODConverter](./src/jodconverter) | latest | | [JODConverter](./src/jodconverter) | latest |
| [Kestra](./src/kestra) | latest-full | | [Kestra](./src/kestra) | latest-full |
@@ -69,6 +73,8 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [LibreOffice](./src/libreoffice) | latest | | [LibreOffice](./src/libreoffice) | latest |
| [libSQL Server](./src/libsql) | latest | | [libSQL Server](./src/libsql) | latest |
| [LiteLLM](./src/litellm) | main-stable | | [LiteLLM](./src/litellm) | main-stable |
| [llama.cpp](./src/llama.cpp) | server |
| [LMDeploy](./src/lmdeploy) | v0.11.1 |
| [Logstash](./src/logstash) | 8.16.1 | | [Logstash](./src/logstash) | 8.16.1 |
| [MariaDB Galera Cluster](./src/mariadb-galera) | 11.7.2 | | [MariaDB Galera Cluster](./src/mariadb-galera) | 11.7.2 |
| [Memos](./src/memos) | 0.25.3 | | [Memos](./src/memos) | 0.25.3 |
@@ -77,6 +83,7 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [Minecraft Bedrock Server](./src/minecraft-bedrock-server) | latest | | [Minecraft Bedrock Server](./src/minecraft-bedrock-server) | latest |
| [MinIO](./src/minio) | 0.20251015 | | [MinIO](./src/minio) | 0.20251015 |
| [MLflow](./src/mlflow) | v2.20.2 | | [MLflow](./src/mlflow) | v2.20.2 |
| [MoltBot](./apps/moltbot) | main |
| [MongoDB ReplicaSet Single](./src/mongodb-replicaset-single) | 8.2.3 | | [MongoDB ReplicaSet Single](./src/mongodb-replicaset-single) | 8.2.3 |
| [MongoDB ReplicaSet](./src/mongodb-replicaset) | 8.2.3 | | [MongoDB ReplicaSet](./src/mongodb-replicaset) | 8.2.3 |
| [MongoDB Standalone](./src/mongodb-standalone) | 8.2.3 | | [MongoDB Standalone](./src/mongodb-standalone) | 8.2.3 |
@@ -93,9 +100,10 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [Odoo](./src/odoo) | 19.0 | | [Odoo](./src/odoo) | 19.0 |
| [Ollama](./src/ollama) | 0.12.0 | | [Ollama](./src/ollama) | 0.12.0 |
| [Open WebUI](./src/open-webui) | main | | [Open WebUI](./src/open-webui) | main |
| [Phoenix (Arize)](./src/phoenix) | 12.28.1-nonroot | | [Phoenix (Arize)](./src/phoenix) | 12.31.2-nonroot |
| [Pingora Proxy Manager](./src/pingora-proxy-manager) | v1.0.3 | | [Pingora Proxy Manager](./src/pingora-proxy-manager) | v1.0.3 |
| [Open WebUI Rust](./src/open-webui-rust) | latest | | [Open WebUI Rust](./src/open-webui-rust) | latest |
| [OpenCode](./src/opencode) | 1.1.27 |
| [OpenCoze](./apps/opencoze) | See Docs | | [OpenCoze](./apps/opencoze) | See Docs |
| [OpenCut](./src/opencut) | latest | | [OpenCut](./src/opencut) | latest |
| [OpenList](./src/openlist) | latest | | [OpenList](./src/openlist) | latest |
@@ -106,6 +114,7 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [Overleaf](./src/overleaf) | 5.2.1 | | [Overleaf](./src/overleaf) | 5.2.1 |
| [PocketBase](./src/pocketbase) | 0.30.0 | | [PocketBase](./src/pocketbase) | 0.30.0 |
| [Podman](./src/podman) | v5.7.1 | | [Podman](./src/podman) | v5.7.1 |
| [Pogocache](./src/pogocache) | 1.3.1 |
| [Portainer](./src/portainer) | 2.27.3-alpine | | [Portainer](./src/portainer) | 2.27.3-alpine |
| [Portkey AI Gateway](./src/portkey-gateway) | latest | | [Portkey AI Gateway](./src/portkey-gateway) | latest |
| [PostgreSQL](./src/postgres) | 17.6 | | [PostgreSQL](./src/postgres) | 17.6 |
@@ -117,10 +126,11 @@ Compose Anything 通过提供一组高质量的 Docker Compose 配置文件,
| [Redpanda](./src/redpanda) | v24.3.1 | | [Redpanda](./src/redpanda) | v24.3.1 |
| [Redis Cluster](./src/redis-cluster) | 8.2.1 | | [Redis Cluster](./src/redis-cluster) | 8.2.1 |
| [Redis](./src/redis) | 8.2.1 | | [Redis](./src/redis) | 8.2.1 |
| [Renovate](./src/renovate) | 42.52.5-full | | [Renovate](./src/renovate) | 42.85.4-full |
| [Restate Cluster](./src/restate-cluster) | 1.5.3 | | [Restate Cluster](./src/restate-cluster) | 1.5.3 |
| [Restate](./src/restate) | 1.5.3 | | [Restate](./src/restate) | 1.5.3 |
| [SearXNG](./src/searxng) | 2025.1.20-1ce14ef99 | | [SearXNG](./src/searxng) | 2025.1.20-1ce14ef99 |
| [Selenium](./src/selenium) | 144.0-20260120 |
| [SigNoz](./src/signoz) | 0.55.0 | | [SigNoz](./src/signoz) | 0.55.0 |
| [Sim](./apps/sim) | latest | | [Sim](./apps/sim) | latest |
| [Stable Diffusion WebUI](./apps/stable-diffusion-webui-docker) | latest | | [Stable Diffusion WebUI](./apps/stable-diffusion-webui-docker) | latest |

View File

@@ -0,0 +1,97 @@
# DeepTutor Configuration
# Copy this file to .env and fill in your API keys
#! ==================================================
#! General Settings
#! ==================================================
# Timezone (default: UTC)
TZ=UTC
# User and Group ID for file permissions (default: 1000)
# Adjust if your host user has a different UID/GID
PUID=1000
PGID=1000
# Global registry prefix (optional)
# Example: registry.example.com/ or leave empty for Docker Hub/GHCR
GLOBAL_REGISTRY=
#! ==================================================
#! DeepTutor Version
#! ==================================================
# Image version (default: latest)
# Available tags: latest, v0.5.x
# See: https://github.com/HKUDS/DeepTutor/pkgs/container/deeptutor
DEEPTUTOR_VERSION=latest
#! ==================================================
#! Port Configuration
#! ==================================================
# Backend port (internal: 8001)
BACKEND_PORT=8001
# Host port override for backend
DEEPTUTOR_BACKEND_PORT_OVERRIDE=8001
# Frontend port (internal: 3782)
FRONTEND_PORT=3782
# Host port override for frontend
DEEPTUTOR_FRONTEND_PORT_OVERRIDE=3782
#! ==================================================
#! API Base URLs
#! ==================================================
# Internal API base URL (used by frontend to communicate with backend)
NEXT_PUBLIC_API_BASE=http://localhost:8001
# External API base URL (for cloud deployment, set to your public URL)
# Example: https://your-server.com:8001
# For local deployment, use the same as NEXT_PUBLIC_API_BASE
NEXT_PUBLIC_API_BASE_EXTERNAL=http://localhost:8001
#! ==================================================
#! LLM API Keys (Required)
#! ==================================================
# OpenAI API Key (Required)
# Get from: https://platform.openai.com/api-keys
OPENAI_API_KEY=sk-your-openai-api-key-here
# OpenAI Base URL (default: https://api.openai.com/v1)
# For OpenAI-compatible APIs (e.g., Azure OpenAI, custom endpoints)
OPENAI_BASE_URL=https://api.openai.com/v1
# Default LLM Model (default: gpt-4o)
# Options: gpt-4o, gpt-4-turbo, gpt-4, gpt-3.5-turbo, etc.
DEFAULT_MODEL=gpt-4o
#! ==================================================
#! Additional LLM API Keys (Optional)
#! ==================================================
# Anthropic API Key (Optional, for Claude models)
# Get from: https://console.anthropic.com/
ANTHROPIC_API_KEY=
# Perplexity API Key (Optional, for web search)
# Get from: https://www.perplexity.ai/settings/api
PERPLEXITY_API_KEY=
# DashScope API Key (Optional, for Alibaba Cloud models)
# Get from: https://dashscope.console.aliyun.com/
DASHSCOPE_API_KEY=
#! ==================================================
#! Resource Limits
#! ==================================================
# CPU limits (default: 4.00 cores limit, 1.00 cores reservation)
DEEPTUTOR_CPU_LIMIT=4.00
DEEPTUTOR_CPU_RESERVATION=1.00
# Memory limits (default: 8G limit, 2G reservation)
DEEPTUTOR_MEMORY_LIMIT=8G
DEEPTUTOR_MEMORY_RESERVATION=2G

248
apps/deeptutor/README.md Normal file
View File

@@ -0,0 +1,248 @@
# DeepTutor
[中文说明](README.zh.md) | English
## Overview
DeepTutor is an AI-powered personalized learning assistant that transforms any document into an interactive learning experience with multi-agent intelligence. It helps you solve problems, generate questions, conduct research, collaborate on writing, organize notes, and guides you through learning paths.
**Project:** <https://github.com/HKUDS/DeepTutor>
**License:** Apache-2.0
**Documentation:** <https://hkuds.github.io/DeepTutor/>
## Features
- **Problem Solving** — Detailed step-by-step solutions with visual diagrams
- **Question Generation** — Adaptive questions based on your knowledge level
- **Research Assistant** — Deep research with multi-agent collaboration
- **Co-Writer** — Interactive idea generation and writing assistance
- **Smart Notebook** — Organize and retrieve learning materials efficiently
- **Guided Learning** — Personalized learning paths and progress tracking
- **Multi-Agent System** — Specialized agents for different learning tasks
- **RAG Integration** — LightRAG and RAG-Anything for knowledge retrieval
- **Code Execution** — Built-in code playground for practice
## Quick Start
### Prerequisites
- Docker and Docker Compose
- OpenAI API key (required)
- Optional: Anthropic, Perplexity, or DashScope API keys
### Installation
1. **Clone this repository**
```bash
git clone <your-compose-anything-repo>
cd apps/deeptutor
```
2. **Configure environment**
```bash
cp .env.example .env
# Edit .env and add your API keys
```
**Required configuration:**
- `OPENAI_API_KEY` — Your OpenAI API key
**Optional configuration:**
- `ANTHROPIC_API_KEY` — For Claude models
- `PERPLEXITY_API_KEY` — For web search
- `DASHSCOPE_API_KEY` — For Alibaba Cloud models
- Adjust ports if needed (default: 8001 for backend, 3782 for frontend)
- Set `NEXT_PUBLIC_API_BASE_EXTERNAL` for cloud deployments
3. **Optional: Custom agent configuration**
Create a `config/agents.yaml` file to customize agent behaviors (see [documentation](https://hkuds.github.io/DeepTutor/guide/config.html) for details).
4. **Start the service**
```bash
docker compose up -d
```
First run takes approximately 30-60 seconds to initialize.
5. **Access the application**
- **Frontend:** <http://localhost:3782>
- **Backend API:** <http://localhost:8001>
- **API Documentation:** <http://localhost:8001/docs>
## Usage
### Create Knowledge Base
1. Navigate to <http://localhost:3782/knowledge>
2. Click "New Knowledge Base"
3. Upload documents (supports PDF, DOCX, TXT, Markdown, HTML, etc.)
4. Wait for processing to complete
### Learning Modes
- **Solve** — Get step-by-step solutions to problems
- **Question** — Generate practice questions based on your materials
- **Research** — Deep research with multi-agent collaboration
- **Co-Writer** — Interactive writing and idea generation
- **Notebook** — Organize and manage your learning materials
- **Guide** — Follow personalized learning paths
### Advanced Features
- **Code Execution** — Practice coding directly in the interface
- **Visual Diagrams** — Automatic diagram generation for complex concepts
- **Export** — Download your work as PDF or Markdown
- **Multi-language** — Support for multiple languages
## Configuration
### Environment Variables
Key environment variables (see [.env.example](.env.example) for all options):
| Variable | Default | Description |
| ------------------------ | ---------- | ------------------------- |
| `OPENAI_API_KEY` | (required) | Your OpenAI API key |
| `DEFAULT_MODEL` | `gpt-4o` | Default LLM model |
| `BACKEND_PORT` | `8001` | Backend server port |
| `FRONTEND_PORT` | `3782` | Frontend application port |
| `DEEPTUTOR_CPU_LIMIT` | `4.00` | CPU limit (cores) |
| `DEEPTUTOR_MEMORY_LIMIT` | `8G` | Memory limit |
### Ports
- **8001** — Backend API server
- **3782** — Frontend web interface
### Volumes
- `deeptutor_data` — User data, knowledge bases, and learning materials
- `./config` — Custom agent configurations (optional)
## Resource Requirements
**Minimum:**
- CPU: 1 core
- Memory: 2GB
- Disk: 2GB + space for knowledge bases
**Recommended:**
- CPU: 4 cores
- Memory: 8GB
- Disk: 10GB+
## Supported Models
DeepTutor supports multiple LLM providers:
- **OpenAI** — GPT-4, GPT-4 Turbo, GPT-3.5 Turbo
- **Anthropic** — Claude 3 (Opus, Sonnet, Haiku)
- **Perplexity** — For web search integration
- **DashScope** — Alibaba Cloud models
- **OpenAI-compatible APIs** — Any API compatible with OpenAI format
## Troubleshooting
### Backend fails to start
- Verify `OPENAI_API_KEY` is set correctly in `.env`
- Check logs: `docker compose logs -f`
- Ensure ports 8001 and 3782 are not in use
- Verify sufficient disk space for volumes
### Frontend cannot connect to backend
- Confirm backend is running: visit <http://localhost:8001/docs>
- For cloud deployments, set `NEXT_PUBLIC_API_BASE_EXTERNAL` to your public URL
- Check firewall settings
### Knowledge base processing fails
- Ensure sufficient memory (recommended 8GB+)
- Check document format is supported
- Review logs for specific errors
### API rate limits
- Monitor your API usage on provider dashboards
- Consider upgrading your API plan
- Use different models for different tasks
## Security Notes
- **API Keys** — Keep your API keys secure, never commit them to version control
- **Network Exposure** — For production deployments, use HTTPS and proper authentication
- **Data Privacy** — User data is stored in Docker volumes; ensure proper backup and security
- **Resource Limits** — Set appropriate CPU and memory limits to prevent resource exhaustion
## Updates
To update to the latest version:
```bash
# Pull the latest image
docker compose pull
# Recreate containers
docker compose up -d
```
To update to a specific version, edit `DEEPTUTOR_VERSION` in `.env` and run:
```bash
docker compose up -d
```
## Advanced Usage
### Custom Agent Configuration
Create `config/agents.yaml` to customize agent behaviors:
```yaml
agents:
solver:
model: gpt-4o
temperature: 0.7
researcher:
model: gpt-4-turbo
max_tokens: 4000
```
See [official documentation](https://hkuds.github.io/DeepTutor/guide/config.html) for detailed configuration options.
### Cloud Deployment
For cloud deployment, additional configuration is needed:
1. Set public URL in `.env`:
```env
NEXT_PUBLIC_API_BASE_EXTERNAL=https://your-domain.com:8001
```
2. Configure reverse proxy (nginx/Caddy) for HTTPS
3. Ensure proper firewall rules
4. Consider using environment-specific secrets management
### Using Different Embedding Models
DeepTutor uses `text-embedding-3-large` by default. To use different embedding models, refer to the [official documentation](https://hkuds.github.io/DeepTutor/guide/config.html).
## Links
- **GitHub:** <https://github.com/HKUDS/DeepTutor>
- **Documentation:** <https://hkuds.github.io/DeepTutor/>
- **Issues:** <https://github.com/HKUDS/DeepTutor/issues>
- **Discussions:** <https://github.com/HKUDS/DeepTutor/discussions>
## License
DeepTutor is licensed under the Apache-2.0 License. See the [official repository](https://github.com/HKUDS/DeepTutor) for details.

248
apps/deeptutor/README.zh.md Normal file
View File

@@ -0,0 +1,248 @@
# DeepTutor
中文说明 | [English](README.md)
## 概述
DeepTutor 是一个 AI 驱动的个性化学习助手,通过多智能体系统将任何文档转化为交互式学习体验。它可以帮助您解决问题、生成题目、进行研究、协作写作、整理笔记,并引导您完成学习路径。
**项目地址:** <https://github.com/HKUDS/DeepTutor>
**许可证:** Apache-2.0
**文档:** <https://hkuds.github.io/DeepTutor/>
## 功能特性
- **问题求解** — 提供详细的分步解决方案和可视化图表
- **题目生成** — 根据您的知识水平生成自适应题目
- **研究助手** — 通过多智能体协作进行深度研究
- **协作写作** — 交互式创意生成和写作辅助
- **智能笔记** — 高效组织和检索学习材料
- **引导学习** — 个性化学习路径和进度跟踪
- **多智能体系统** — 针对不同学习任务的专业智能体
- **RAG 集成** — 使用 LightRAG 和 RAG-Anything 进行知识检索
- **代码执行** — 内置代码练习环境
## 快速开始
### 前置要求
- Docker 和 Docker Compose
- OpenAI API 密钥(必需)
- 可选Anthropic、Perplexity 或 DashScope API 密钥
### 安装步骤
1. **克隆仓库**
```bash
git clone <your-compose-anything-repo>
cd apps/deeptutor
```
2. **配置环境变量**
```bash
cp .env.example .env
# 编辑 .env 文件并添加您的 API 密钥
```
**必需配置:**
- `OPENAI_API_KEY` — 您的 OpenAI API 密钥
**可选配置:**
- `ANTHROPIC_API_KEY` — 用于 Claude 模型
- `PERPLEXITY_API_KEY` — 用于网络搜索
- `DASHSCOPE_API_KEY` — 用于阿里云模型
- 如需调整端口(默认:后端 8001前端 3782
- 云端部署时设置 `NEXT_PUBLIC_API_BASE_EXTERNAL`
3. **可选:自定义智能体配置**
创建 `config/agents.yaml` 文件以自定义智能体行为(详见[文档](https://hkuds.github.io/DeepTutor/guide/config.html))。
4. **启动服务**
```bash
docker compose up -d
```
首次运行需要约 30-60 秒初始化。
5. **访问应用**
- **前端界面:** <http://localhost:3782>
- **后端 API** <http://localhost:8001>
- **API 文档:** <http://localhost:8001/docs>
## 使用方法
### 创建知识库
1. 访问 <http://localhost:3782/knowledge>
2. 点击"新建知识库"
3. 上传文档(支持 PDF、DOCX、TXT、Markdown、HTML 等)
4. 等待处理完成
### 学习模式
- **求解Solve** — 获取问题的分步解决方案
- **题目Question** — 基于学习材料生成练习题
- **研究Research** — 通过多智能体协作进行深度研究
- **协作写作Co-Writer** — 交互式写作和创意生成
- **笔记Notebook** — 组织和管理学习材料
- **引导Guide** — 遵循个性化学习路径
### 高级功能
- **代码执行** — 在界面中直接练习编码
- **可视化图表** — 为复杂概念自动生成图表
- **导出** — 将您的工作下载为 PDF 或 Markdown
- **多语言支持** — 支持多种语言
## 配置说明
### 环境变量
主要环境变量(所有选项见 [.env.example](.env.example)
| 变量 | 默认值 | 描述 |
| ------------------------ | -------- | -------------------- |
| `OPENAI_API_KEY` | (必需) | 您的 OpenAI API 密钥 |
| `DEFAULT_MODEL` | `gpt-4o` | 默认 LLM 模型 |
| `BACKEND_PORT` | `8001` | 后端服务器端口 |
| `FRONTEND_PORT` | `3782` | 前端应用端口 |
| `DEEPTUTOR_CPU_LIMIT` | `4.00` | CPU 限制(核心数) |
| `DEEPTUTOR_MEMORY_LIMIT` | `8G` | 内存限制 |
### 端口说明
- **8001** — 后端 API 服务器
- **3782** — 前端 Web 界面
### 数据卷
- `deeptutor_data` — 用户数据、知识库和学习材料
- `./config` — 自定义智能体配置(可选)
## 资源要求
**最低配置:**
- CPU1 核心
- 内存2GB
- 磁盘2GB + 知识库所需空间
**推荐配置:**
- CPU4 核心
- 内存8GB
- 磁盘10GB+
## 支持的模型
DeepTutor 支持多个 LLM 提供商:
- **OpenAI** — GPT-4、GPT-4 Turbo、GPT-3.5 Turbo
- **Anthropic** — Claude 3Opus、Sonnet、Haiku
- **Perplexity** — 用于网络搜索集成
- **DashScope** — 阿里云模型
- **OpenAI 兼容 API** — 任何与 OpenAI 格式兼容的 API
## 故障排查
### 后端启动失败
- 验证 `.env` 中的 `OPENAI_API_KEY` 是否正确设置
- 查看日志:`docker compose logs -f`
- 确保端口 8001 和 3782 未被占用
- 验证数据卷有足够的磁盘空间
### 前端无法连接后端
- 确认后端正在运行:访问 <http://localhost:8001/docs>
- 云端部署时,将 `NEXT_PUBLIC_API_BASE_EXTERNAL` 设置为您的公网 URL
- 检查防火墙设置
### 知识库处理失败
- 确保有足够的内存(推荐 8GB+
- 检查文档格式是否支持
- 查看日志了解具体错误
### API 速率限制
- 在提供商控制台监控 API 使用情况
- 考虑升级 API 计划
- 为不同任务使用不同模型
## 安全提示
- **API 密钥** — 妥善保管您的 API 密钥,切勿提交到版本控制系统
- **网络暴露** — 生产环境部署时,使用 HTTPS 和适当的身份验证
- **数据隐私** — 用户数据存储在 Docker 卷中,请确保适当的备份和安全措施
- **资源限制** — 设置合适的 CPU 和内存限制以防止资源耗尽
## 更新
更新到最新版本:
```bash
# 拉取最新镜像
docker compose pull
# 重新创建容器
docker compose up -d
```
更新到特定版本,编辑 `.env` 中的 `DEEPTUTOR_VERSION` 并运行:
```bash
docker compose up -d
```
## 高级用法
### 自定义智能体配置
创建 `config/agents.yaml` 以自定义智能体行为:
```yaml
agents:
solver:
model: gpt-4o
temperature: 0.7
researcher:
model: gpt-4-turbo
max_tokens: 4000
```
详细配置选项请参见[官方文档](https://hkuds.github.io/DeepTutor/guide/config.html)。
### 云端部署
云端部署需要额外配置:
1. 在 `.env` 中设置公网 URL
```env
NEXT_PUBLIC_API_BASE_EXTERNAL=https://your-domain.com:8001
```
2. 配置反向代理nginx/Caddy以支持 HTTPS
3. 确保适当的防火墙规则
4. 考虑使用特定环境的密钥管理
### 使用不同的嵌入模型
DeepTutor 默认使用 `text-embedding-3-large`。要使用不同的嵌入模型,请参考[官方文档](https://hkuds.github.io/DeepTutor/guide/config.html)。
## 相关链接
- **GitHub** <https://github.com/HKUDS/DeepTutor>
- **文档:** <https://hkuds.github.io/DeepTutor/>
- **问题反馈:** <https://github.com/HKUDS/DeepTutor/issues>
- **讨论区:** <https://github.com/HKUDS/DeepTutor/discussions>
## 许可证
DeepTutor 使用 Apache-2.0 许可证。详情请参见[官方仓库](https://github.com/HKUDS/DeepTutor)。

View File

@@ -0,0 +1,68 @@
# DeepTutor: AI-Powered Personalized Learning Assistant
# https://github.com/HKUDS/DeepTutor
# Transform any document into an interactive learning experience with multi-agent intelligence
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
deeptutor:
<<: *defaults
image: ${GLOBAL_REGISTRY:-ghcr.io}/hkuds/deeptutor:${DEEPTUTOR_VERSION:-latest}
ports:
- "${DEEPTUTOR_BACKEND_PORT_OVERRIDE:-8001}:${BACKEND_PORT:-8001}"
- "${DEEPTUTOR_FRONTEND_PORT_OVERRIDE:-3782}:${FRONTEND_PORT:-3782}"
volumes:
- deeptutor_data:/app/data
- ./config:/app/config:ro
environment:
- TZ=${TZ:-UTC}
# Backend port
- BACKEND_PORT=${BACKEND_PORT:-8001}
# Frontend port
- FRONTEND_PORT=${FRONTEND_PORT:-3782}
# API base URLs
- NEXT_PUBLIC_API_BASE=${NEXT_PUBLIC_API_BASE:-http://localhost:8001}
- NEXT_PUBLIC_API_BASE_EXTERNAL=${NEXT_PUBLIC_API_BASE_EXTERNAL:-http://localhost:8001}
# LLM API Keys
- OPENAI_API_KEY=${OPENAI_API_KEY}
- OPENAI_BASE_URL=${OPENAI_BASE_URL:-https://api.openai.com/v1}
- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY:-}
- PERPLEXITY_API_KEY=${PERPLEXITY_API_KEY:-}
- DASHSCOPE_API_KEY=${DASHSCOPE_API_KEY:-}
# Default LLM model
- DEFAULT_MODEL=${DEFAULT_MODEL:-gpt-4o}
# User ID and Group ID for permission management
- PUID=${PUID:-1000}
- PGID=${PGID:-1000}
healthcheck:
test:
[
"CMD",
"curl",
"-f",
"http://localhost:${BACKEND_PORT:-8001}/health",
"||",
"exit",
"1",
]
interval: 30s
timeout: 10s
retries: 3
start_period: 60s
deploy:
resources:
limits:
cpus: ${DEEPTUTOR_CPU_LIMIT:-4.00}
memory: ${DEEPTUTOR_MEMORY_LIMIT:-8G}
reservations:
cpus: ${DEEPTUTOR_CPU_RESERVATION:-1.00}
memory: ${DEEPTUTOR_MEMORY_RESERVATION:-2G}
volumes:
deeptutor_data:

54
apps/moltbot/.env.example Normal file
View File

@@ -0,0 +1,54 @@
# MoltBot Environment Configuration
# Copy this file to .env and configure the values
# Timezone (default: UTC)
TZ=UTC
# Global container registry prefix (optional)
# Examples: docker.io/, ghcr.io/, your-registry.com/
GLOBAL_REGISTRY=
# MoltBot Version
# Use 'main' for latest, or specific version tag like 'v2026.1.27'
MOLTBOT_VERSION=main
# === Gateway Configuration ===
# Gateway access token (REQUIRED - generate a secure random token)
# Example: openssl rand -hex 32
MOLTBOT_GATEWAY_TOKEN=your-secure-token-here
# Gateway bind address
# Options: loopback (127.0.0.1), lan (0.0.0.0 for LAN access)
MOLTBOT_GATEWAY_BIND=lan
# Gateway internal port (default: 18789)
MOLTBOT_GATEWAY_PORT=18789
# Gateway host port override (default: 18789)
MOLTBOT_GATEWAY_PORT_OVERRIDE=18789
# Bridge port override (default: 18790)
MOLTBOT_BRIDGE_PORT_OVERRIDE=18790
# === Model API Keys (Optional - if not using OAuth) ===
# Anthropic Claude API Key
ANTHROPIC_API_KEY=
# OpenAI API Key
OPENAI_API_KEY=
# Claude AI Session Keys (for web session auth)
CLAUDE_AI_SESSION_KEY=
CLAUDE_WEB_SESSION_KEY=
CLAUDE_WEB_COOKIE=
# === Resource Limits ===
# Gateway service resource limits
MOLTBOT_CPU_LIMIT=2.0
MOLTBOT_MEMORY_LIMIT=2G
MOLTBOT_CPU_RESERVATION=1.0
MOLTBOT_MEMORY_RESERVATION=1G
# CLI service resource limits
MOLTBOT_CLI_CPU_LIMIT=1.0
MOLTBOT_CLI_MEMORY_LIMIT=512M

214
apps/moltbot/README.md Normal file
View File

@@ -0,0 +1,214 @@
# MoltBot
MoltBot is a personal AI assistant that runs on your own devices. It integrates with multiple messaging platforms (WhatsApp, Telegram, Slack, Discord, Google Chat, Signal, iMessage, Microsoft Teams, WebChat) and provides AI-powered assistance across all your channels.
## Features
- **Multi-channel Support**: WhatsApp, Telegram, Slack, Discord, Google Chat, Signal, iMessage, BlueBubbles, Microsoft Teams, Matrix, Zalo, WebChat
- **Local-first Gateway**: Single control plane for sessions, channels, tools, and events
- **Multi-agent Routing**: Route inbound channels to isolated agents with per-agent sessions
- **Voice Wake + Talk Mode**: Always-on speech for macOS/iOS/Android with ElevenLabs
- **Live Canvas**: Agent-driven visual workspace with A2UI
- **First-class Tools**: Browser, canvas, nodes, cron, sessions, and channel-specific actions
- **Companion Apps**: macOS menu bar app + iOS/Android nodes
- **Skills Platform**: Bundled, managed, and workspace skills with install gating
## Quick Start
1. Copy the example environment file:
```bash
cp .env.example .env
```
2. Generate a secure gateway token:
```bash
# Using OpenSSL
openssl rand -hex 32
# Or using Python
python3 -c "import secrets; print(secrets.token_hex(32))"
```
3. Edit `.env` and set at least:
- `MOLTBOT_GATEWAY_TOKEN` - Your generated token
- `ANTHROPIC_API_KEY` or `OPENAI_API_KEY` - If using API key auth
4. Start the gateway:
```bash
docker compose up -d
```
5. Access the Control UI:
- Open <http://localhost:18789> in your browser
- Enter your gateway token when prompted
## Configuration
### Gateway Access
The gateway can be accessed in two ways:
- **Loopback** (`MOLTBOT_GATEWAY_BIND=loopback`): Only accessible from the host machine (127.0.0.1)
- **LAN** (`MOLTBOT_GATEWAY_BIND=lan`): Accessible from your local network (0.0.0.0)
For production deployments, consider:
- Using Tailscale Serve/Funnel for secure remote access
- Setting up SSH tunnels
- Implementing reverse proxy with authentication
### Model Configuration
MoltBot supports multiple AI model providers:
- **Anthropic Claude** (Recommended): Claude Pro/Max with OAuth or API key
- **OpenAI**: ChatGPT/Codex with OAuth or API key
- **Custom Providers**: Configure via the Control UI or config file
Set API keys in `.env` or use OAuth authentication through the onboarding wizard.
### Channel Integration
To connect messaging platforms:
1. **WhatsApp**: Use the CLI to link device
```bash
docker compose run --rm moltbot-cli channels login
```
2. **Telegram**: Set `TELEGRAM_BOT_TOKEN` in config
3. **Discord**: Set `DISCORD_BOT_TOKEN` in config
4. **Slack**: Set `SLACK_BOT_TOKEN` and `SLACK_APP_TOKEN` in config
See the [official documentation](https://docs.molt.bot/channels) for detailed setup instructions.
## Using the CLI
The CLI service is available via the `cli` profile:
```bash
# Run onboarding wizard
docker compose run --rm --service-ports moltbot-cli onboard
# List providers
docker compose run --rm moltbot-cli providers list
# Send a message
docker compose run --rm moltbot-cli message send --to +1234567890 --message "Hello"
# Check health
docker compose run --rm moltbot-cli health --port 18789
```
## Security Considerations
1. **Gateway Token**: Keep your gateway token secure. This is the authentication method for the Control UI and WebSocket connections.
2. **DM Access**: By default, MoltBot uses pairing mode for direct messages from unknown senders. They receive a pairing code that you must approve.
3. **Network Exposure**: If exposing the gateway beyond localhost, use proper authentication and encryption:
- Set up Tailscale for secure remote access
- Use SSH tunnels
- Implement reverse proxy with HTTPS and authentication
4. **API Keys**: Never commit API keys to version control. Use `.env` file or secrets management.
5. **Sandbox Mode**: For group/channel safety, enable sandbox mode to run non-main sessions in Docker containers.
## Advanced Configuration
### Resource Limits
Adjust CPU and memory limits in `.env`:
```env
MOLTBOT_CPU_LIMIT=2.0
MOLTBOT_MEMORY_LIMIT=2G
MOLTBOT_CPU_RESERVATION=1.0
MOLTBOT_MEMORY_RESERVATION=1G
```
### Persistent Data
Data is stored in two Docker volumes:
- `moltbot_config`: Configuration files and credentials (~/.clawdbot)
- `moltbot_workspace`: Agent workspace and skills (~/clawd)
To backup your data:
```bash
docker run --rm -v moltbot_config:/data -v $(pwd):/backup alpine tar czf /backup/moltbot-config-backup.tar.gz /data
docker run --rm -v moltbot_workspace:/data -v $(pwd):/backup alpine tar czf /backup/moltbot-workspace-backup.tar.gz /data
```
### Custom Configuration File
Create a custom config file at `~/.clawdbot/moltbot.json` (inside the container):
```json
{
"agents": {
"defaults": {
"model": {
"primary": "anthropic/claude-opus-4-5",
"fallbacks": ["anthropic/claude-sonnet-4-5", "openai/gpt-4o"]
}
}
}
}
```
## Troubleshooting
### Gateway Won't Start
1. Check logs: `docker compose logs moltbot-gateway`
2. Verify gateway token is set in `.env`
3. Ensure port 18789 is not already in use
### Can't Access Control UI
1. Verify gateway bind setting matches your access method
2. Check firewall rules if accessing from another machine
3. Ensure container is healthy: `docker compose ps`
### Model API Errors
1. Verify API keys are correctly set in `.env`
2. Check API key validity and quota
3. Review logs for specific error messages
### Run Doctor Command
The doctor command helps diagnose common issues:
```bash
docker compose run --rm moltbot-cli doctor
```
## Documentation
- [Official Website](https://molt.bot)
- [Full Documentation](https://docs.molt.bot)
- [Getting Started Guide](https://docs.molt.bot/start/getting-started)
- [Configuration Reference](https://docs.molt.bot/gateway/configuration)
- [Security Guide](https://docs.molt.bot/gateway/security)
- [Docker Installation](https://docs.molt.bot/install/docker)
- [GitHub Repository](https://github.com/moltbot/moltbot)
## License
MoltBot is released under the MIT License. See the [LICENSE](https://github.com/moltbot/moltbot/blob/main/LICENSE) file for details.
## Community
- [Discord](https://discord.gg/clawd)
- [GitHub Discussions](https://github.com/moltbot/moltbot/discussions)
- [Issues](https://github.com/moltbot/moltbot/issues)

214
apps/moltbot/README.zh.md Normal file
View File

@@ -0,0 +1,214 @@
# MoltBot
MoltBot 是一个运行在你自己设备上的个人 AI 助手。它集成了多个消息平台WhatsApp、Telegram、Slack、Discord、Google Chat、Signal、iMessage、Microsoft Teams、WebChat并在所有频道上提供 AI 驱动的帮助。
## 功能特性
- **多频道支持**WhatsApp、Telegram、Slack、Discord、Google Chat、Signal、iMessage、BlueBubbles、Microsoft Teams、Matrix、Zalo、WebChat
- **本地优先网关**:会话、频道、工具和事件的统一控制平面
- **多代理路由**:将入站频道路由到具有独立会话的隔离代理
- **语音唤醒 + 对话模式**macOS/iOS/Android 上的永久在线语音支持(使用 ElevenLabs
- **实时画布**:由代理驱动的可视化工作空间,支持 A2UI
- **一流工具**:浏览器、画布、节点、定时任务、会话和特定频道的操作
- **配套应用**macOS 菜单栏应用 + iOS/Android 节点
- **技能平台**:内置、托管和工作区技能,支持安装门控
## 快速开始
1. 复制示例环境文件:
```bash
cp .env.example .env
```
2. 生成安全的网关令牌:
```bash
# 使用 OpenSSL
openssl rand -hex 32
# 或使用 Python
python3 -c "import secrets; print(secrets.token_hex(32))"
```
3. 编辑 `.env` 文件,至少设置:
- `MOLTBOT_GATEWAY_TOKEN` - 你生成的令牌
- `ANTHROPIC_API_KEY` 或 `OPENAI_API_KEY` - 如果使用 API 密钥认证
4. 启动网关:
```bash
docker compose up -d
```
5. 访问控制界面:
- 在浏览器中打开 <http://localhost:18789>
- 在提示时输入你的网关令牌
## 配置
### 网关访问
网关可以通过两种方式访问:
- **回环地址**`MOLTBOT_GATEWAY_BIND=loopback`仅从主机访问127.0.0.1
- **局域网**`MOLTBOT_GATEWAY_BIND=lan`从本地网络访问0.0.0.0
对于生产部署,建议:
- 使用 Tailscale Serve/Funnel 进行安全的远程访问
- 设置 SSH 隧道
- 实现带认证的反向代理
### 模型配置
MoltBot 支持多个 AI 模型提供商:
- **Anthropic Claude**推荐Claude Pro/Max支持 OAuth 或 API 密钥
- **OpenAI**ChatGPT/Codex支持 OAuth 或 API 密钥
- **自定义提供商**:通过控制界面或配置文件进行配置
在 `.env` 文件中设置 API 密钥,或通过入门向导使用 OAuth 认证。
### 频道集成
连接消息平台:
1. **WhatsApp**:使用 CLI 链接设备
```bash
docker compose run --rm moltbot-cli channels login
```
2. **Telegram**:在配置中设置 `TELEGRAM_BOT_TOKEN`
3. **Discord**:在配置中设置 `DISCORD_BOT_TOKEN`
4. **Slack**:在配置中设置 `SLACK_BOT_TOKEN` 和 `SLACK_APP_TOKEN`
详细设置说明请参阅[官方文档](https://docs.molt.bot/channels)。
## 使用命令行界面
CLI 服务可通过 `cli` 配置文件使用:
```bash
# 运行入门向导
docker compose run --rm --service-ports moltbot-cli onboard
# 列出提供商
docker compose run --rm moltbot-cli providers list
# 发送消息
docker compose run --rm moltbot-cli message send --to +1234567890 --message "你好"
# 检查健康状态
docker compose run --rm moltbot-cli health --port 18789
```
## 安全注意事项
1. **网关令牌**:保护好你的网关令牌。这是控制界面和 WebSocket 连接的认证方式。
2. **私信访问**默认情况下MoltBot 对来自未知发送者的私信使用配对模式。他们会收到一个配对码,你必须批准。
3. **网络暴露**:如果在 localhost 之外暴露网关,请使用适当的认证和加密:
- 设置 Tailscale 进行安全的远程访问
- 使用 SSH 隧道
- 实现带 HTTPS 和认证的反向代理
4. **API 密钥**:永远不要将 API 密钥提交到版本控制。使用 `.env` 文件或密钥管理。
5. **沙箱模式**:为了群组/频道安全,启用沙箱模式以在 Docker 容器中运行非主会话。
## 高级配置
### 资源限制
在 `.env` 文件中调整 CPU 和内存限制:
```env
MOLTBOT_CPU_LIMIT=2.0
MOLTBOT_MEMORY_LIMIT=2G
MOLTBOT_CPU_RESERVATION=1.0
MOLTBOT_MEMORY_RESERVATION=1G
```
### 持久化数据
数据存储在两个 Docker 卷中:
- `moltbot_config`:配置文件和凭据(~/.clawdbot
- `moltbot_workspace`:代理工作区和技能(~/clawd
备份数据:
```bash
docker run --rm -v moltbot_config:/data -v $(pwd):/backup alpine tar czf /backup/moltbot-config-backup.tar.gz /data
docker run --rm -v moltbot_workspace:/data -v $(pwd):/backup alpine tar czf /backup/moltbot-workspace-backup.tar.gz /data
```
### 自定义配置文件
在 `~/.clawdbot/moltbot.json`(容器内)创建自定义配置文件:
```json
{
"agents": {
"defaults": {
"model": {
"primary": "anthropic/claude-opus-4-5",
"fallbacks": ["anthropic/claude-sonnet-4-5", "openai/gpt-4o"]
}
}
}
}
```
## 故障排除
### 网关无法启动
1. 检查日志:`docker compose logs moltbot-gateway`
2. 验证网关令牌是否在 `.env` 中设置
3. 确保端口 18789 未被占用
### 无法访问控制界面
1. 验证网关绑定设置是否与你的访问方式匹配
2. 如果从另一台机器访问,检查防火墙规则
3. 确保容器健康:`docker compose ps`
### 模型 API 错误
1. 验证 API 密钥是否在 `.env` 中正确设置
2. 检查 API 密钥有效性和配额
3. 查看日志中的具体错误消息
### 运行诊断命令
诊断命令可帮助诊断常见问题:
```bash
docker compose run --rm moltbot-cli doctor
```
## 文档
- [官方网站](https://molt.bot)
- [完整文档](https://docs.molt.bot)
- [入门指南](https://docs.molt.bot/start/getting-started)
- [配置参考](https://docs.molt.bot/gateway/configuration)
- [安全指南](https://docs.molt.bot/gateway/security)
- [Docker 安装](https://docs.molt.bot/install/docker)
- [GitHub 仓库](https://github.com/moltbot/moltbot)
## 许可证
MoltBot 使用 MIT 许可证发布。详情请参阅 [LICENSE](https://github.com/moltbot/moltbot/blob/main/LICENSE) 文件。
## 社区
- [Discord](https://discord.gg/clawd)
- [GitHub 讨论](https://github.com/moltbot/moltbot/discussions)
- [问题跟踪](https://github.com/moltbot/moltbot/issues)

View File

@@ -0,0 +1,88 @@
# MoltBot - Personal AI Assistant Docker Compose Configuration
# Official Repository: https://github.com/moltbot/moltbot
# Documentation: https://docs.molt.bot
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
moltbot-gateway:
<<: *defaults
image: ${GLOBAL_REGISTRY:-ghcr.io}/moltbot/moltbot:${MOLTBOT_VERSION:-main}
environment:
- TZ=${TZ:-UTC}
- HOME=/home/node
- NODE_ENV=production
- TERM=xterm-256color
# Gateway configuration
- CLAWDBOT_GATEWAY_TOKEN=${MOLTBOT_GATEWAY_TOKEN}
- CLAWDBOT_GATEWAY_BIND=${MOLTBOT_GATEWAY_BIND:-lan}
- CLAWDBOT_GATEWAY_PORT=${MOLTBOT_GATEWAY_PORT:-18789}
# Optional: Model API keys (if not using OAuth)
- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY:-}
- OPENAI_API_KEY=${OPENAI_API_KEY:-}
- CLAUDE_AI_SESSION_KEY=${CLAUDE_AI_SESSION_KEY:-}
- CLAUDE_WEB_SESSION_KEY=${CLAUDE_WEB_SESSION_KEY:-}
- CLAUDE_WEB_COOKIE=${CLAUDE_WEB_COOKIE:-}
volumes:
- moltbot_config:/home/node/.clawdbot
- moltbot_workspace:/home/node/clawd
ports:
- "${MOLTBOT_GATEWAY_PORT_OVERRIDE:-18789}:18789"
- "${MOLTBOT_BRIDGE_PORT_OVERRIDE:-18790}:18790"
command:
- node
- dist/index.js
- gateway
- --bind
- "${MOLTBOT_GATEWAY_BIND:-lan}"
- --port
- "18789"
healthcheck:
test: ["CMD", "node", "dist/index.js", "health", "--port", "18789"]
interval: 30s
timeout: 10s
retries: 3
start_period: 60s
deploy:
resources:
limits:
cpus: ${MOLTBOT_CPU_LIMIT:-2.0}
memory: ${MOLTBOT_MEMORY_LIMIT:-2G}
reservations:
cpus: ${MOLTBOT_CPU_RESERVATION:-1.0}
memory: ${MOLTBOT_MEMORY_RESERVATION:-1G}
moltbot-cli:
<<: *defaults
image: ${GLOBAL_REGISTRY:-ghcr.io}/moltbot/moltbot:${MOLTBOT_VERSION:-main}
environment:
- TZ=${TZ:-UTC}
- HOME=/home/node
- TERM=xterm-256color
- BROWSER=echo
- CLAUDE_AI_SESSION_KEY=${CLAUDE_AI_SESSION_KEY:-}
- CLAUDE_WEB_SESSION_KEY=${CLAUDE_WEB_SESSION_KEY:-}
- CLAUDE_WEB_COOKIE=${CLAUDE_WEB_COOKIE:-}
volumes:
- moltbot_config:/home/node/.clawdbot
- moltbot_workspace:/home/node/clawd
stdin_open: true
tty: true
entrypoint: ["node", "dist/index.js"]
profiles:
- cli
deploy:
resources:
limits:
cpus: ${MOLTBOT_CLI_CPU_LIMIT:-1.0}
memory: ${MOLTBOT_CLI_MEMORY_LIMIT:-512M}
volumes:
moltbot_config:
moltbot_workspace:

View File

@@ -101,19 +101,19 @@ docker compose run --rm microsandbox --help
### Environment Variables ### Environment Variables
| Variable | Description | Default | | Variable | Description | Default |
| --------------------------------- | -------------------------------------- | --------- | | --------------------------------- | ------------------------------------- | ----------- |
| `MICROSANDBOX_VERSION` | MicroSandbox version | `latest` | | `MICROSANDBOX_VERSION` | MicroSandbox version | `latest` |
| `DEBIAN_VERSION` | Debian base image version | `13.2-slim` | | `DEBIAN_VERSION` | Debian base image version | `13.2-slim` |
| `MICROSANDBOX_AUTO_PULL_IMAGES` | Auto pull base images on build | `true` | | `MICROSANDBOX_AUTO_PULL_IMAGES` | Auto pull base images on build | `true` |
| `MICROSANDBOX_DEV_MODE` | Enable dev mode (no API key required) | `true` | | `MICROSANDBOX_DEV_MODE` | Enable dev mode (no API key required) | `true` |
| `MICROSANDBOX_PORT` | Internal container port | `5555` | | `MICROSANDBOX_PORT` | Internal container port | `5555` |
| `MICROSANDBOX_PORT_OVERRIDE` | External host port mapping | `5555` | | `MICROSANDBOX_PORT_OVERRIDE` | External host port mapping | `5555` |
| `TZ` | Container timezone | `UTC` | | `TZ` | Container timezone | `UTC` |
| `MICROSANDBOX_CPU_LIMIT` | Maximum CPU cores | `4` | | `MICROSANDBOX_CPU_LIMIT` | Maximum CPU cores | `4` |
| `MICROSANDBOX_CPU_RESERVATION` | Reserved CPU cores | `1` | | `MICROSANDBOX_CPU_RESERVATION` | Reserved CPU cores | `1` |
| `MICROSANDBOX_MEMORY_LIMIT` | Maximum memory allocation | `4G` | | `MICROSANDBOX_MEMORY_LIMIT` | Maximum memory allocation | `4G` |
| `MICROSANDBOX_MEMORY_RESERVATION` | Reserved memory | `1G` | | `MICROSANDBOX_MEMORY_RESERVATION` | Reserved memory | `1G` |
### Volume Mounts ### Volume Mounts

View File

@@ -101,19 +101,19 @@ docker compose run --rm microsandbox --help
### 环境变量 ### 环境变量
| 变量 | 描述 | 默认值 | | 变量 | 描述 | 默认值 |
| --------------------------------- | ------------------------ | ----------- | | --------------------------------- | ----------------------------- | ----------- |
| `MICROSANDBOX_VERSION` | MicroSandbox 版本 | `latest` | | `MICROSANDBOX_VERSION` | MicroSandbox 版本 | `latest` |
| `DEBIAN_VERSION` | Debian 基础镜像版本 | `13.2-slim` | | `DEBIAN_VERSION` | Debian 基础镜像版本 | `13.2-slim` |
| `MICROSANDBOX_AUTO_PULL_IMAGES` | 构建时自动拉取基础镜像 | `true` | | `MICROSANDBOX_AUTO_PULL_IMAGES` | 构建时自动拉取基础镜像 | `true` |
| `MICROSANDBOX_DEV_MODE` | 启用开发模式(无需 API 密钥) | `true` | | `MICROSANDBOX_DEV_MODE` | 启用开发模式(无需 API 密钥) | `true` |
| `MICROSANDBOX_PORT` | 容器内部端口 | `5555` | | `MICROSANDBOX_PORT` | 容器内部端口 | `5555` |
| `MICROSANDBOX_PORT_OVERRIDE` | 外部主机端口映射 | `5555` | | `MICROSANDBOX_PORT_OVERRIDE` | 外部主机端口映射 | `5555` |
| `TZ` | 容器时区 | `UTC` | | `TZ` | 容器时区 | `UTC` |
| `MICROSANDBOX_CPU_LIMIT` | CPU 核心数上限 | `4` | | `MICROSANDBOX_CPU_LIMIT` | CPU 核心数上限 | `4` |
| `MICROSANDBOX_CPU_RESERVATION` | CPU 核心数预留 | `1` | | `MICROSANDBOX_CPU_RESERVATION` | CPU 核心数预留 | `1` |
| `MICROSANDBOX_MEMORY_LIMIT` | 最大内存分配 | `4G` | | `MICROSANDBOX_MEMORY_LIMIT` | 最大内存分配 | `4G` |
| `MICROSANDBOX_MEMORY_RESERVATION` | 内存预留 | `1G` | | `MICROSANDBOX_MEMORY_RESERVATION` | 内存预留 | `1G` |
### 卷挂载 ### 卷挂载

View File

@@ -23,7 +23,7 @@ services:
- DEBIAN_VERSION=${DEBIAN_VERSION:-13.2-slim} - DEBIAN_VERSION=${DEBIAN_VERSION:-13.2-slim}
- MICROSANDBOX_VERSION=${MICROSANDBOX_VERSION:-} - MICROSANDBOX_VERSION=${MICROSANDBOX_VERSION:-}
- MICROSANDBOX_AUTO_PULL_IMAGES=${MICROSANDBOX_AUTO_PULL_IMAGES:-true} - MICROSANDBOX_AUTO_PULL_IMAGES=${MICROSANDBOX_AUTO_PULL_IMAGES:-true}
image: ${GLOBAL_REGISTRY:-ghcr.io/zerocore-ai/}microsandbox:${MICROSANDBOX_VERSION:-latest} image: ${GLOBAL_REGISTRY:-ghcr.io}/zerocore-ai/microsandbox:${MICROSANDBOX_VERSION:-latest}
ports: ports:
- "${MICROSANDBOX_PORT_OVERRIDE:-5555}:${MICROSANDBOX_PORT:-5555}" - "${MICROSANDBOX_PORT_OVERRIDE:-5555}:${MICROSANDBOX_PORT:-5555}"
# Privileged mode and relaxed security profiles are required for KVM access # Privileged mode and relaxed security profiles are required for KVM access

View File

@@ -1,5 +1,5 @@
# MinerU Docker image # MinerU Docker image
MINERU_VERSION=2.7.1 MINERU_VERSION=2.7.3
# Port configurations # Port configurations
MINERU_PORT_OVERRIDE_VLLM=30000 MINERU_PORT_OVERRIDE_VLLM=30000

View File

@@ -19,7 +19,7 @@ RUN apt-get update && \
rm -rf /var/lib/apt/lists/* rm -rf /var/lib/apt/lists/*
# Install mineru latest # Install mineru latest
RUN python3 -m pip install -U 'mineru[core]>=2.7.1' --break-system-packages && \ RUN python3 -m pip install -U 'mineru[core]>=2.7.3' --break-system-packages && \
python3 -m pip cache purge python3 -m pip cache purge
# Download models and update the configuration file # Download models and update the configuration file

View File

@@ -39,7 +39,7 @@ mineru -p demo.pdf -o ./output -b vlm-http-client -u http://localhost:30000
## Configuration ## Configuration
- `MINERU_VERSION`: The version for MinerU, default is `2.7.1`. - `MINERU_VERSION`: The version for MinerU, default is `2.7.3`.
- `MINERU_PORT_OVERRIDE_VLLM`: The host port for the VLLM server, default is `30000`. - `MINERU_PORT_OVERRIDE_VLLM`: The host port for the VLLM server, default is `30000`.
- `MINERU_PORT_OVERRIDE_API`: The host port for the API service, default is `8000`. - `MINERU_PORT_OVERRIDE_API`: The host port for the API service, default is `8000`.
- `MINERU_PORT_OVERRIDE_GRADIO`: The host port for the Gradio WebUI, default is `7860`. - `MINERU_PORT_OVERRIDE_GRADIO`: The host port for the Gradio WebUI, default is `7860`.

View File

@@ -39,7 +39,7 @@ mineru -p demo.pdf -o ./output -b vlm-http-client -u http://localhost:30000
## 配置 ## 配置
- `MINERU_VERSION`: MinerU 的 Docker 镜像版本,默认为 `2.7.1`。 - `MINERU_VERSION`: MinerU 的 Docker 镜像版本,默认为 `2.7.3`。
- `MINERU_PORT_OVERRIDE_VLLM`: VLLM 服务器的主机端口,默认为 `30000`。 - `MINERU_PORT_OVERRIDE_VLLM`: VLLM 服务器的主机端口,默认为 `30000`。
- `MINERU_PORT_OVERRIDE_API`: API 服务的主机端口,默认为 `8000`。 - `MINERU_PORT_OVERRIDE_API`: API 服务的主机端口,默认为 `8000`。
- `MINERU_PORT_OVERRIDE_GRADIO`: Gradio WebUI 的主机端口,默认为 `7860`。 - `MINERU_PORT_OVERRIDE_GRADIO`: Gradio WebUI 的主机端口,默认为 `7860`。

View File

@@ -8,7 +8,7 @@ x-defaults: &defaults
x-mineru-vllm: &mineru-vllm x-mineru-vllm: &mineru-vllm
<<: *defaults <<: *defaults
image: ${GLOBAL_REGISTRY:-}alexsuntop/mineru:${MINERU_VERSION:-2.7.1} image: ${GLOBAL_REGISTRY:-}alexsuntop/mineru:${MINERU_VERSION:-2.7.3}
build: build:
context: . context: .
dockerfile: Dockerfile dockerfile: Dockerfile
@@ -45,29 +45,10 @@ services:
- ${MINERU_PORT_OVERRIDE_VLLM:-30000}:30000 - ${MINERU_PORT_OVERRIDE_VLLM:-30000}:30000
entrypoint: mineru-openai-server entrypoint: mineru-openai-server
command: command:
# ==================== Engine Selection ==================== --host 0.0.0.0
# WARNING: Only ONE engine can be enabled at a time! --port 30000
# Choose 'vllm' OR 'lmdeploy' (uncomment one line below) # --data-parallel-size 2 # If using multiple GPUs, increase throughput using vllm's multi-GPU parallel mode
- --engine vllm # --gpu-memory-utilization 0.9 # If running on a single GPU and encountering VRAM shortage, reduce the KV cache size by this parameter, if VRAM issues persist, try lowering it further to `0.4` or below.
# --engine lmdeploy
# ==================== vLLM Engine Parameters ====================
# Uncomment if using --engine vllm
- --host 0.0.0.0
- --port 30000
# Multi-GPU configuration (increase throughput)
# --data-parallel-size 2
# Single GPU memory optimization (reduce if VRAM insufficient)
# --gpu-memory-utilization 0.5 # Try 0.4 or lower if issues persist
# ==================== LMDeploy Engine Parameters ====================
# Uncomment if using --engine lmdeploy
# --server-name 0.0.0.0
# --server-port 30000
# Multi-GPU configuration (increase throughput)
# --dp 2
# Single GPU memory optimization (reduce if VRAM insufficient)
# --cache-max-entry-count 0.5 # Try 0.4 or lower if issues persist
healthcheck: healthcheck:
test: ["CMD-SHELL", "curl -f http://localhost:30000/health || exit 1"] test: ["CMD-SHELL", "curl -f http://localhost:30000/health || exit 1"]
interval: 30s interval: 30s
@@ -82,21 +63,11 @@ services:
- ${MINERU_PORT_OVERRIDE_API:-8000}:8000 - ${MINERU_PORT_OVERRIDE_API:-8000}:8000
entrypoint: mineru-api entrypoint: mineru-api
command: command:
# ==================== Server Configuration ==================== --host 0.0.0.0
- --host 0.0.0.0 --port 8000
- --port 8000 # parameters for vllm-engine
# --data-parallel-size 2 # If using multiple GPUs, increase throughput using vllm's multi-GPU parallel mode
# ==================== vLLM Engine Parameters ==================== # --gpu-memory-utilization 0.5 # If running on a single GPU and encountering VRAM shortage, reduce the KV cache size by this parameter, if VRAM issues persist, try lowering it further to `0.4` or below.
# Multi-GPU configuration
# --data-parallel-size 2
# Single GPU memory optimization
# --gpu-memory-utilization 0.5 # Try 0.4 or lower if VRAM insufficient
# ==================== LMDeploy Engine Parameters ====================
# Multi-GPU configuration
# --dp 2
# Single GPU memory optimization
# --cache-max-entry-count 0.5 # Try 0.4 or lower if VRAM insufficient
healthcheck: healthcheck:
test: test:
[ [
@@ -105,7 +76,7 @@ services:
"--no-verbose", "--no-verbose",
"--tries=1", "--tries=1",
"--spider", "--spider",
"http://localhost:8000/health", "http://localhost:8000/docs",
] ]
interval: 30s interval: 30s
timeout: 10s timeout: 10s
@@ -119,30 +90,13 @@ services:
- ${MINERU_PORT_OVERRIDE_GRADIO:-7860}:7860 - ${MINERU_PORT_OVERRIDE_GRADIO:-7860}:7860
entrypoint: mineru-gradio entrypoint: mineru-gradio
command: command:
# ==================== Gradio Server Configuration ==================== --server-name 0.0.0.0
- --server-name 0.0.0.0 --server-port 7860
- --server-port 7860 # --enable-api false # If you want to disable the API, set this to false
# --max-convert-pages 20 # If you want to limit the number of pages for conversion, set this to a specific number
# ==================== Gradio Feature Settings ==================== # parameters for vllm-engine
# --enable-api false # Disable API endpoint # --data-parallel-size 2 # If using multiple GPUs, increase throughput using vllm's multi-GPU parallel mode
# --max-convert-pages 20 # Limit conversion page count # --gpu-memory-utilization 0.5 # If running on a single GPU and encountering VRAM shortage, reduce the KV cache size by this parameter, if VRAM issues persist, try lowering it further to `0.4` or below.
# ==================== Engine Selection ====================
# WARNING: Only ONE engine can be enabled at a time!
# Option 1: vLLM Engine (recommended for most users)
- --enable-vllm-engine true
# Multi-GPU configuration
# --data-parallel-size 2
# Single GPU memory optimization
# --gpu-memory-utilization 0.5 # Try 0.4 or lower if VRAM insufficient
# Option 2: LMDeploy Engine
# --enable-lmdeploy-engine true
# Multi-GPU configuration
# --dp 2
# Single GPU memory optimization
# --cache-max-entry-count 0.5 # Try 0.4 or lower if VRAM insufficient
healthcheck: healthcheck:
test: test:
[ [

View File

@@ -24,7 +24,15 @@ services:
cpus: ${BYTEBOT_DESKTOP_CPU_RESERVATION:-1.0} cpus: ${BYTEBOT_DESKTOP_CPU_RESERVATION:-1.0}
memory: ${BYTEBOT_DESKTOP_MEMORY_RESERVATION:-2G} memory: ${BYTEBOT_DESKTOP_MEMORY_RESERVATION:-2G}
healthcheck: healthcheck:
test: ["CMD", "wget", "--no-verbose", "--tries=1", "--spider", "http://localhost:9990/"] test:
[
"CMD",
"wget",
"--no-verbose",
"--tries=1",
"--spider",
"http://localhost:9990/",
]
interval: 30s interval: 30s
timeout: 10s timeout: 10s
retries: 3 retries: 3
@@ -56,7 +64,15 @@ services:
cpus: ${BYTEBOT_AGENT_CPU_RESERVATION:-0.5} cpus: ${BYTEBOT_AGENT_CPU_RESERVATION:-0.5}
memory: ${BYTEBOT_AGENT_MEMORY_RESERVATION:-512M} memory: ${BYTEBOT_AGENT_MEMORY_RESERVATION:-512M}
healthcheck: healthcheck:
test: ["CMD", "wget", "--no-verbose", "--tries=1", "--spider", "http://localhost:9991/health"] test:
[
"CMD",
"wget",
"--no-verbose",
"--tries=1",
"--spider",
"http://localhost:9991/health",
]
interval: 30s interval: 30s
timeout: 10s timeout: 10s
retries: 3 retries: 3
@@ -83,7 +99,15 @@ services:
cpus: ${BYTEBOT_UI_CPU_RESERVATION:-0.25} cpus: ${BYTEBOT_UI_CPU_RESERVATION:-0.25}
memory: ${BYTEBOT_UI_MEMORY_RESERVATION:-256M} memory: ${BYTEBOT_UI_MEMORY_RESERVATION:-256M}
healthcheck: healthcheck:
test: ["CMD", "wget", "--no-verbose", "--tries=1", "--spider", "http://localhost:9992/"] test:
[
"CMD",
"wget",
"--no-verbose",
"--tries=1",
"--spider",
"http://localhost:9992/",
]
interval: 30s interval: 30s
timeout: 10s timeout: 10s
retries: 3 retries: 3

18
src/falkordb/.env.example Normal file
View File

@@ -0,0 +1,18 @@
# FalkorDB Version
# Latest stable version can be found at https://hub.docker.com/r/falkordb/falkordb/tags
FALKORDB_VERSION=v4.14.11
# Port configuration
# Port for Redis protocol (Graph Database)
FALKORDB_PORT_OVERRIDE=6379
# Port for FalkorDB Browser UI
FALKORDB_BROWSER_PORT_OVERRIDE=3000
# Resource limits
FALKORDB_CPU_LIMIT=1.00
FALKORDB_MEMORY_LIMIT=2G
FALKORDB_CPU_RESERVATION=0.25
FALKORDB_MEMORY_RESERVATION=512M
# Timezone
TZ=UTC

31
src/falkordb/README.md Normal file
View File

@@ -0,0 +1,31 @@
# FalkorDB
[FalkorDB](https://falkordb.com/) is a low-latency property graph database that leverages sparse matrices and linear algebra for high-performance graph queries. It is a community-driven fork of RedisGraph, optimized for large-scale knowledge graphs and AI-powered applications.
## Getting Started
1. Copy `.env.example` to `.env` and adjust the configuration as needed.
2. Start the service:
```bash
docker compose up -d
```
3. Access the FalkorDB Browser at `http://localhost:3000`.
4. Connect to the database using `redis-cli` or any Redis-compatible client on port `6379`.
## Environment Variables
| Variable | Description | Default |
| -------------------------------- | ---------------------------- | ---------- |
| `FALKORDB_VERSION` | Version of FalkorDB image | `v4.14.11` |
| `FALKORDB_PORT_OVERRIDE` | Host port for Redis protocol | `6379` |
| `FALKORDB_BROWSER_PORT_OVERRIDE` | Host port for Browser UI | `3000` |
| `FALKORDB_CPU_LIMIT` | Maximum CPU cycles | `1.00` |
| `FALKORDB_MEMORY_LIMIT` | Maximum memory | `2G` |
## Resources
- [Official Documentation](https://docs.falkordb.com/)
- [GitHub Repository](https://github.com/FalkorDB/FalkorDB)
- [Docker Hub](https://hub.docker.com/r/falkordb/falkordb)

31
src/falkordb/README.zh.md Normal file
View File

@@ -0,0 +1,31 @@
# FalkorDB
[FalkorDB](https://falkordb.com/) 是一个低延迟的属性图数据库,利用稀疏矩阵和线性代数实现高性能图查询。它是 RedisGraph 的社区驱动分支,针对大规模知识图谱和 AI 驱动的应用进行了优化。
## 快速开始
1.`.env.example` 复制为 `.env` 并根据需要调整配置。
2. 启动服务:
```bash
docker compose up -d
```
3. 通过 `http://localhost:3000` 访问 FalkorDB Browser 界面。
4. 使用 `redis-cli` 或任何兼容 Redis 的客户端连接到 `6379` 端口。
## 环境变量
| 变量名 | 描述 | 默认值 |
| -------------------------------- | -------------------- | ---------- |
| `FALKORDB_VERSION` | FalkorDB 镜像版本 | `v4.14.11` |
| `FALKORDB_PORT_OVERRIDE` | Redis 协议的主机端口 | `6379` |
| `FALKORDB_BROWSER_PORT_OVERRIDE` | 浏览器界面的主机端口 | `3000` |
| `FALKORDB_CPU_LIMIT` | 最大 CPU 使用率 | `1.00` |
| `FALKORDB_MEMORY_LIMIT` | 最大内存限制 | `2G` |
## 相关资源
- [官方文档](https://docs.falkordb.com/)
- [GitHub 仓库](https://github.com/FalkorDB/FalkorDB)
- [Docker Hub](https://hub.docker.com/r/falkordb/falkordb)

View File

@@ -0,0 +1,36 @@
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
falkordb:
<<: *defaults
image: ${GLOBAL_REGISTRY:-}falkordb/falkordb:${FALKORDB_VERSION:-v4.14.11}
ports:
- "${FALKORDB_PORT_OVERRIDE:-6379}:6379"
- "${FALKORDB_BROWSER_PORT_OVERRIDE:-3000}:3000"
volumes:
- falkordb_data:/data
environment:
- TZ=${TZ:-UTC}
healthcheck:
test: ["CMD", "redis-cli", "ping"]
interval: 30s
timeout: 10s
retries: 3
start_period: 10s
deploy:
resources:
limits:
cpus: ${FALKORDB_CPU_LIMIT:-1.00}
memory: ${FALKORDB_MEMORY_LIMIT:-2G}
reservations:
cpus: ${FALKORDB_CPU_RESERVATION:-0.25}
memory: ${FALKORDB_MEMORY_RESERVATION:-512M}
volumes:
falkordb_data:

21
src/flowise/.env.example Normal file
View File

@@ -0,0 +1,21 @@
# Global Registry Prefix (optional)
# GLOBAL_REGISTRY=
# Flowise Image Version
FLOWISE_VERSION=3.0.12
# Timezone
TZ=UTC
# Port to bind to on the host machine
FLOWISE_PORT_OVERRIDE=3000
# Resource Limits
FLOWISE_CPU_LIMIT=1
FLOWISE_MEMORY_LIMIT=1024M
FLOWISE_CPU_RESERVATION=0.5
FLOWISE_MEMORY_RESERVATION=512M
# Optional basic auth (leave empty to disable)
# FLOWISE_USERNAME=
# FLOWISE_PASSWORD=

32
src/flowise/README.md Normal file
View File

@@ -0,0 +1,32 @@
# Flowise
[English](./README.md) | [中文](./README.zh.md)
Quick start: <https://docs.flowiseai.com>.
This service deploys Flowise, a visual LLM orchestration platform.
## Services
- `flowise`: The Flowise service.
## Configuration
- `GLOBAL_REGISTRY`: The registry prefix for the Flowise image, default is empty.
- `FLOWISE_VERSION`: The version of the Flowise image, default is `3.0.12`.
- `TZ`: The timezone for the container, default is `UTC`.
- `FLOWISE_PORT_OVERRIDE`: The host port for Flowise, default is `3000`.
- `FLOWISE_CPU_LIMIT`: The CPU limit for the Flowise service, default is `1`.
- `FLOWISE_MEMORY_LIMIT`: The memory limit for the Flowise service, default is `1024M`.
- `FLOWISE_CPU_RESERVATION`: The CPU reservation for the Flowise service, default is `0.5`.
- `FLOWISE_MEMORY_RESERVATION`: The memory reservation for the Flowise service, default is `512M`.
- `FLOWISE_USERNAME`: Optional basic auth username. Leave empty to disable.
- `FLOWISE_PASSWORD`: Optional basic auth password. Leave empty to disable.
## Volumes
- `flowise_data`: A volume for storing Flowise data.
## Notes
- The health check uses the `/api/v1/ping` endpoint.

32
src/flowise/README.zh.md Normal file
View File

@@ -0,0 +1,32 @@
# Flowise
[English](./README.md) | [中文](./README.zh.md)
快速开始:<https://docs.flowiseai.com>
此服务用于部署 Flowise一个可视化的 LLM 编排平台。
## 服务
- `flowise`Flowise 服务。
## 配置
- `GLOBAL_REGISTRY`Flowise 镜像的仓库前缀,默认为空。
- `FLOWISE_VERSION`Flowise 镜像版本,默认是 `3.0.12`
- `TZ`:容器时区,默认是 `UTC`
- `FLOWISE_PORT_OVERRIDE`Flowise 的宿主机端口,默认是 `3000`
- `FLOWISE_CPU_LIMIT`Flowise 服务的 CPU 限制,默认是 `1`
- `FLOWISE_MEMORY_LIMIT`Flowise 服务的内存限制,默认是 `1024M`
- `FLOWISE_CPU_RESERVATION`Flowise 服务的 CPU 预留,默认是 `0.5`
- `FLOWISE_MEMORY_RESERVATION`Flowise 服务的内存预留,默认是 `512M`
- `FLOWISE_USERNAME`:可选的基础认证用户名,不设置则禁用。
- `FLOWISE_PASSWORD`:可选的基础认证密码,不设置则禁用。
## 数据卷
- `flowise_data`:用于存储 Flowise 数据的卷。
## 说明
- 健康检查使用 `/api/v1/ping` 端点。

View File

@@ -0,0 +1,44 @@
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
flowise:
<<: *defaults
image: ${GLOBAL_REGISTRY:-}flowiseai/flowise:${FLOWISE_VERSION:-3.0.12}
ports:
- "${FLOWISE_PORT_OVERRIDE:-3000}:3000"
volumes:
- flowise_data:/root/.flowise
environment:
- TZ=${TZ:-UTC}
- PORT=3000
- FLOWISE_USERNAME=${FLOWISE_USERNAME:-}
- FLOWISE_PASSWORD=${FLOWISE_PASSWORD:-}
healthcheck:
test:
[
"CMD",
"node",
"-e",
"require('http').get('http://localhost:3000/api/v1/ping',res=>process.exit(res.statusCode===200?0:1)).on('error',()=>process.exit(1))"
]
interval: 30s
timeout: 10s
retries: 5
start_period: 20s
deploy:
resources:
limits:
cpus: ${FLOWISE_CPU_LIMIT:-1}
memory: ${FLOWISE_MEMORY_LIMIT:-1024M}
reservations:
cpus: ${FLOWISE_CPU_RESERVATION:-0.5}
memory: ${FLOWISE_MEMORY_RESERVATION:-512M}
volumes:
flowise_data:

View File

@@ -1,5 +1,5 @@
# Gitea Runner version # Gitea Runner version
GITEA_RUNNER_VERSION=0.2.13-dind GITEA_RUNNER_VERSION=0.2.13
# Gitea instance URL # Gitea instance URL
INSTANCE_URL=http://localhost:3000 INSTANCE_URL=http://localhost:3000

View File

@@ -36,7 +36,7 @@ runner:
# It works when something like `uses: actions/checkout@v4` is used and DEFAULT_ACTIONS_URL is set to github, # It works when something like `uses: actions/checkout@v4` is used and DEFAULT_ACTIONS_URL is set to github,
# and github_mirror is not empty. In this case, # and github_mirror is not empty. In this case,
# it replaces https://github.com with the value here, which is useful for some special network environments. # it replaces https://github.com with the value here, which is useful for some special network environments.
github_mirror: '' github_mirror: ""
# The labels of a runner are used to determine which jobs the runner can run, and how to run them. # The labels of a runner are used to determine which jobs the runner can run, and how to run them.
# Like: "macos-arm64:host" or "ubuntu-latest:docker://docker.gitea.com/runner-images:ubuntu-latest" # Like: "macos-arm64:host" or "ubuntu-latest:docker://docker.gitea.com/runner-images:ubuntu-latest"
# Find more images provided by Gitea at https://gitea.com/docker.gitea.com/runner-images . # Find more images provided by Gitea at https://gitea.com/docker.gitea.com/runner-images .

View File

@@ -1,5 +1,5 @@
# Gitea Version # Gitea Version
GITEA_VERSION=1.25.2-rootless GITEA_VERSION=1.25.4-rootless
# Database configuration # Database configuration
GITEA_DB_TYPE=postgres GITEA_DB_TYPE=postgres

View File

@@ -9,7 +9,7 @@ x-defaults: &defaults
services: services:
gitea: gitea:
<<: *defaults <<: *defaults
image: ${GLOBAL_REGISTRY:-}gitea/gitea:${GITEA_VERSION:-1.25.2-rootless} image: ${GLOBAL_REGISTRY:-}gitea/gitea:${GITEA_VERSION:-1.25.4-rootless}
environment: environment:
- USER_UID=1000 - USER_UID=1000
- USER_GID=1000 - USER_GID=1000

33
src/influxdb/.env.example Normal file
View File

@@ -0,0 +1,33 @@
# InfluxDB Version
INFLUXDB_VERSION=2.8.0
# Timezone
TZ=UTC
# Initialization mode (setup or upgrade)
INFLUXDB_INIT_MODE=setup
# Admin user credentials
INFLUXDB_ADMIN_USERNAME=admin
INFLUXDB_ADMIN_PASSWORD=changeme123456
# Organization name
INFLUXDB_ORG=myorg
# Default bucket name
INFLUXDB_BUCKET=mybucket
# Retention period (0 means infinite)
INFLUXDB_RETENTION=0
# Admin token for API access
INFLUXDB_ADMIN_TOKEN=mytoken123456
# Port to bind to on the host machine
INFLUXDB_PORT_OVERRIDE=8086
# Resource limits
INFLUXDB_CPU_LIMIT=2.0
INFLUXDB_MEMORY_LIMIT=2G
INFLUXDB_CPU_RESERVATION=0.5
INFLUXDB_MEMORY_RESERVATION=512M

169
src/influxdb/README.md Normal file
View File

@@ -0,0 +1,169 @@
# InfluxDB
InfluxDB is a high-performance, open-source time series database designed for handling high write and query loads. It is ideal for storing and analyzing metrics, events, and real-time analytics data.
## Features
- **Time Series Optimized**: Purpose-built for time-stamped data
- **High Performance**: Fast writes and queries for time series data
- **SQL-like Query Language**: Flux and InfluxQL for flexible data querying
- **Built-in UI**: Web-based interface for data exploration and visualization
- **Retention Policies**: Automatic data expiration and downsampling
- **Multi-tenancy**: Organizations and buckets for data isolation
## Quick Start
1. Copy the environment file and customize it:
```bash
cp .env.example .env
```
2. Edit `.env` to configure your InfluxDB instance:
- `INFLUXDB_ADMIN_USERNAME`: Admin username (default: admin)
- `INFLUXDB_ADMIN_PASSWORD`: Admin password (default: changeme123456)
- `INFLUXDB_ORG`: Organization name (default: myorg)
- `INFLUXDB_BUCKET`: Default bucket name (default: mybucket)
- `INFLUXDB_ADMIN_TOKEN`: API access token (default: mytoken123456)
3. Start InfluxDB:
```bash
docker compose up -d
```
4. Access the InfluxDB UI at `http://localhost:8086`
## Configuration
### Environment Variables
| Variable | Description | Default |
| ------------------------- | ----------------------------------- | ---------------- |
| `INFLUXDB_VERSION` | InfluxDB version | `2.8.0` |
| `TZ` | Timezone | `UTC` |
| `INFLUXDB_INIT_MODE` | Initialization mode (setup/upgrade) | `setup` |
| `INFLUXDB_ADMIN_USERNAME` | Admin username | `admin` |
| `INFLUXDB_ADMIN_PASSWORD` | Admin password | `changeme123456` |
| `INFLUXDB_ORG` | Organization name | `myorg` |
| `INFLUXDB_BUCKET` | Default bucket name | `mybucket` |
| `INFLUXDB_RETENTION` | Retention period (0 for infinite) | `0` |
| `INFLUXDB_ADMIN_TOKEN` | Admin API token | `mytoken123456` |
| `INFLUXDB_PORT_OVERRIDE` | Host port binding | `8086` |
### Volumes
- `influxdb_data`: Stores time series data
- `influxdb_config`: Stores configuration files
## Usage
### Accessing the Web UI
Open your browser and navigate to:
```text
http://localhost:8086
```
Login with the credentials configured in your `.env` file.
### Using the CLI
Execute commands inside the container:
```bash
docker compose exec influxdb influx
```
### Writing Data
Using the Flux query language:
```bash
docker compose exec influxdb influx write \
--bucket mybucket \
--org myorg \
'measurement,tag=value field=42'
```
### Querying Data
Query data using the CLI:
```bash
docker compose exec influxdb influx query \
--org myorg \
'from(bucket: "mybucket") |> range(start: -1h)'
```
## API Access
InfluxDB provides a RESTful API for programmatic access:
```bash
curl -X POST "http://localhost:8086/api/v2/query?org=myorg" \
-H "Authorization: Token mytoken123456" \
-H "Content-Type: application/json" \
-d '{"query": "from(bucket: \"mybucket\") |> range(start: -1h)"}'
```
## Backup and Restore
### Backup
```bash
docker compose exec influxdb influx backup /var/lib/influxdb2/backup
docker compose cp influxdb:/var/lib/influxdb2/backup ./backup
```
### Restore
```bash
docker compose cp ./backup influxdb:/var/lib/influxdb2/backup
docker compose exec influxdb influx restore /var/lib/influxdb2/backup
```
## Security Considerations
1. **Change Default Credentials**: Always change the default admin password and token in production
2. **Use Strong Tokens**: Generate cryptographically secure tokens for API access
3. **Network Security**: Consider using a reverse proxy with HTTPS in production
4. **Access Control**: Use InfluxDB's built-in authorization system to limit access
## Troubleshooting
### Container won't start
Check the logs:
```bash
docker compose logs influxdb
```
### Cannot access web UI
Ensure port 8086 is not in use:
```bash
netstat -an | grep 8086
```
### Data persistence
Verify volumes are properly mounted:
```bash
docker compose exec influxdb ls -la /var/lib/influxdb2
```
## References
- [Official Documentation](https://docs.influxdata.com/influxdb/v2/)
- [Flux Query Language](https://docs.influxdata.com/flux/v0/)
- [Docker Hub](https://hub.docker.com/_/influxdb)
- [GitHub Repository](https://github.com/influxdata/influxdb)
## License
InfluxDB is available under the MIT License. See the [LICENSE](https://github.com/influxdata/influxdb/blob/master/LICENSE) file for more information.

169
src/influxdb/README.zh.md Normal file
View File

@@ -0,0 +1,169 @@
# InfluxDB
InfluxDB 是一个高性能的开源时序数据库,专为处理高写入和查询负载而设计。它非常适合存储和分析指标、事件以及实时分析数据。
## 功能特性
- **时序优化**:专为时间戳数据而构建
- **高性能**:快速的时序数据写入和查询
- **类 SQL 查询语言**Flux 和 InfluxQL 提供灵活的数据查询
- **内置 UI**:基于 Web 的数据探索和可视化界面
- **保留策略**:自动数据过期和降采样
- **多租户**:通过组织和桶实现数据隔离
## 快速开始
1. 复制环境配置文件并自定义:
```bash
cp .env.example .env
```
2. 编辑 `.env` 文件配置您的 InfluxDB 实例:
- `INFLUXDB_ADMIN_USERNAME`管理员用户名默认admin
- `INFLUXDB_ADMIN_PASSWORD`管理员密码默认changeme123456
- `INFLUXDB_ORG`组织名称默认myorg
- `INFLUXDB_BUCKET`默认桶名称默认mybucket
- `INFLUXDB_ADMIN_TOKEN`API 访问令牌默认mytoken123456
3. 启动 InfluxDB
```bash
docker compose up -d
```
4. 访问 InfluxDB UI`http://localhost:8086`
## 配置说明
### 环境变量
| 变量 | 说明 | 默认值 |
| ------------------------- | --------------------------- | ---------------- |
| `INFLUXDB_VERSION` | InfluxDB 版本 | `2.8.0` |
| `TZ` | 时区 | `UTC` |
| `INFLUXDB_INIT_MODE` | 初始化模式setup/upgrade | `setup` |
| `INFLUXDB_ADMIN_USERNAME` | 管理员用户名 | `admin` |
| `INFLUXDB_ADMIN_PASSWORD` | 管理员密码 | `changeme123456` |
| `INFLUXDB_ORG` | 组织名称 | `myorg` |
| `INFLUXDB_BUCKET` | 默认桶名称 | `mybucket` |
| `INFLUXDB_RETENTION` | 保留期限0 表示永久) | `0` |
| `INFLUXDB_ADMIN_TOKEN` | 管理员 API 令牌 | `mytoken123456` |
| `INFLUXDB_PORT_OVERRIDE` | 主机端口绑定 | `8086` |
### 数据卷
- `influxdb_data`:存储时序数据
- `influxdb_config`:存储配置文件
## 使用方法
### 访问 Web UI
在浏览器中打开:
```text
http://localhost:8086
```
使用 `.env` 文件中配置的凭据登录。
### 使用命令行
在容器内执行命令:
```bash
docker compose exec influxdb influx
```
### 写入数据
使用 Flux 查询语言:
```bash
docker compose exec influxdb influx write \
--bucket mybucket \
--org myorg \
'measurement,tag=value field=42'
```
### 查询数据
使用 CLI 查询数据:
```bash
docker compose exec influxdb influx query \
--org myorg \
'from(bucket: "mybucket") |> range(start: -1h)'
```
## API 访问
InfluxDB 提供 RESTful API 用于编程访问:
```bash
curl -X POST "http://localhost:8086/api/v2/query?org=myorg" \
-H "Authorization: Token mytoken123456" \
-H "Content-Type: application/json" \
-d '{"query": "from(bucket: \"mybucket\") |> range(start: -1h)"}'
```
## 备份与恢复
### 备份
```bash
docker compose exec influxdb influx backup /var/lib/influxdb2/backup
docker compose cp influxdb:/var/lib/influxdb2/backup ./backup
```
### 恢复
```bash
docker compose cp ./backup influxdb:/var/lib/influxdb2/backup
docker compose exec influxdb influx restore /var/lib/influxdb2/backup
```
## 安全注意事项
1. **修改默认凭据**:在生产环境中务必修改默认的管理员密码和令牌
2. **使用强令牌**:为 API 访问生成加密安全的令牌
3. **网络安全**:生产环境中考虑使用带 HTTPS 的反向代理
4. **访问控制**:使用 InfluxDB 的内置授权系统限制访问
## 故障排除
### 容器无法启动
查看日志:
```bash
docker compose logs influxdb
```
### 无法访问 Web UI
确保端口 8086 未被占用:
```bash
netstat -an | grep 8086
```
### 数据持久化
验证数据卷是否正确挂载:
```bash
docker compose exec influxdb ls -la /var/lib/influxdb2
```
## 参考资源
- [官方文档](https://docs.influxdata.com/influxdb/v2/)
- [Flux 查询语言](https://docs.influxdata.com/flux/v0/)
- [Docker Hub](https://hub.docker.com/_/influxdb)
- [GitHub 仓库](https://github.com/influxdata/influxdb)
## 许可证
InfluxDB 采用 MIT 许可证发布。详情请参阅 [LICENSE](https://github.com/influxdata/influxdb/blob/master/LICENSE) 文件。

View File

@@ -0,0 +1,45 @@
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
influxdb:
<<: *defaults
image: ${GLOBAL_REGISTRY:-}influxdb:${INFLUXDB_VERSION:-2.8.0}
environment:
TZ: ${TZ:-UTC}
# InfluxDB v2 initialization
DOCKER_INFLUXDB_INIT_MODE: ${INFLUXDB_INIT_MODE:-setup}
DOCKER_INFLUXDB_INIT_USERNAME: ${INFLUXDB_ADMIN_USERNAME:-admin}
DOCKER_INFLUXDB_INIT_PASSWORD: ${INFLUXDB_ADMIN_PASSWORD:-changeme123456}
DOCKER_INFLUXDB_INIT_ORG: ${INFLUXDB_ORG:-myorg}
DOCKER_INFLUXDB_INIT_BUCKET: ${INFLUXDB_BUCKET:-mybucket}
DOCKER_INFLUXDB_INIT_RETENTION: ${INFLUXDB_RETENTION:-0}
DOCKER_INFLUXDB_INIT_ADMIN_TOKEN: ${INFLUXDB_ADMIN_TOKEN:-mytoken123456}
volumes:
- influxdb_data:/var/lib/influxdb2
- influxdb_config:/etc/influxdb2
ports:
- "${INFLUXDB_PORT_OVERRIDE:-8086}:8086"
deploy:
resources:
limits:
cpus: ${INFLUXDB_CPU_LIMIT:-2.0}
memory: ${INFLUXDB_MEMORY_LIMIT:-2G}
reservations:
cpus: ${INFLUXDB_CPU_RESERVATION:-0.5}
memory: ${INFLUXDB_MEMORY_RESERVATION:-512M}
healthcheck:
test: ["CMD", "influx", "ping"]
interval: 30s
timeout: 10s
retries: 3
start_period: 30s
volumes:
influxdb_data:
influxdb_config:

106
src/llama.cpp/.env.example Normal file
View File

@@ -0,0 +1,106 @@
# =============================================================================
# llama.cpp Configuration
# https://github.com/ggml-org/llama.cpp
# LLM inference in C/C++ with support for various hardware accelerators
# =============================================================================
# -----------------------------------------------------------------------------
# General Settings
# -----------------------------------------------------------------------------
# Timezone for the container (default: UTC)
TZ=UTC
# Global registry prefix (optional)
# Example: docker.io/, ghcr.io/, registry.example.com/
GHCR_REGISTRY=ghcr.io/
# -----------------------------------------------------------------------------
# Server Configuration
# -----------------------------------------------------------------------------
# Server image variant
# Options: server (CPU), server-cuda (NVIDIA GPU), server-rocm (AMD GPU),
# server-musa (Moore Threads GPU), server-intel (Intel GPU),
# server-vulkan (Vulkan GPU)
LLAMA_CPP_SERVER_VARIANT=server
# Server port override (default: 8080)
LLAMA_CPP_SERVER_PORT_OVERRIDE=8080
# Model path inside the container
# You need to mount your model file to this path
# Example: /models/llama-2-7b-chat.Q4_K_M.gguf
LLAMA_CPP_MODEL_PATH=/models/model.gguf
# Context size (number of tokens)
# Larger values allow for more context but require more memory
# Default: 512, Common values: 512, 2048, 4096, 8192, 16384, 32768
LLAMA_CPP_CONTEXT_SIZE=512
# Number of GPU layers to offload
# 0 = CPU only, 99 = all layers on GPU (for GPU variants)
# For CPU variant, keep this at 0
LLAMA_CPP_GPU_LAYERS=0
# Number of GPUs to use (for CUDA variant)
LLAMA_CPP_GPU_COUNT=1
# Server CPU limit (in cores)
LLAMA_CPP_SERVER_CPU_LIMIT=4.0
# Server CPU reservation (in cores)
LLAMA_CPP_SERVER_CPU_RESERVATION=2.0
# Server memory limit
LLAMA_CPP_SERVER_MEMORY_LIMIT=8G
# Server memory reservation
LLAMA_CPP_SERVER_MEMORY_RESERVATION=4G
# -----------------------------------------------------------------------------
# CLI Configuration (Light variant)
# -----------------------------------------------------------------------------
# CLI image variant
# Options: light (CPU), light-cuda (NVIDIA GPU), light-rocm (AMD GPU),
# light-musa (Moore Threads GPU), light-intel (Intel GPU),
# light-vulkan (Vulkan GPU)
LLAMA_CPP_CLI_VARIANT=light
# Default prompt for CLI mode
LLAMA_CPP_PROMPT=Hello, how are you?
# CLI CPU limit (in cores)
LLAMA_CPP_CLI_CPU_LIMIT=2.0
# CLI CPU reservation (in cores)
LLAMA_CPP_CLI_CPU_RESERVATION=1.0
# CLI memory limit
LLAMA_CPP_CLI_MEMORY_LIMIT=4G
# CLI memory reservation
LLAMA_CPP_CLI_MEMORY_RESERVATION=2G
# -----------------------------------------------------------------------------
# Full Toolkit Configuration
# -----------------------------------------------------------------------------
# Full image variant (includes model conversion tools)
# Options: full (CPU), full-cuda (NVIDIA GPU), full-rocm (AMD GPU),
# full-musa (Moore Threads GPU), full-intel (Intel GPU),
# full-vulkan (Vulkan GPU)
LLAMA_CPP_FULL_VARIANT=full
# Full CPU limit (in cores)
LLAMA_CPP_FULL_CPU_LIMIT=2.0
# Full CPU reservation (in cores)
LLAMA_CPP_FULL_CPU_RESERVATION=1.0
# Full memory limit
LLAMA_CPP_FULL_MEMORY_LIMIT=4G
# Full memory reservation
LLAMA_CPP_FULL_MEMORY_RESERVATION=2G

245
src/llama.cpp/README.md Normal file
View File

@@ -0,0 +1,245 @@
# llama.cpp
[中文文档](README.zh.md)
[llama.cpp](https://github.com/ggml-org/llama.cpp) is a high-performance C/C++ implementation for LLM inference with support for various hardware accelerators.
## Features
- **Fast Inference**: Optimized C/C++ implementation for efficient LLM inference
- **Multiple Backends**: CPU, CUDA (NVIDIA), ROCm (AMD), MUSA (Moore Threads), Intel GPU, Vulkan
- **OpenAI-compatible API**: Server mode with OpenAI-compatible REST API
- **CLI Support**: Interactive command-line interface for quick testing
- **Model Conversion**: Full toolkit includes tools to convert and quantize models
- **GGUF Format**: Support for the efficient GGUF model format
- **Cross-platform**: Linux (x86-64, ARM64, s390x), Windows, macOS
## Prerequisites
- Docker and Docker Compose installed
- At least 4GB of RAM (8GB+ recommended)
- For GPU variants:
- **CUDA**: NVIDIA GPU with [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit)
- **ROCm**: AMD GPU with proper ROCm drivers
- **MUSA**: Moore Threads GPU with mt-container-toolkit
- GGUF format model file (e.g., from [Hugging Face](https://huggingface.co/models?library=gguf))
## Quick Start
### 1. Server Mode (CPU)
```bash
# Copy and configure environment
cp .env.example .env
# Edit .env and set your model path
# LLAMA_CPP_MODEL_PATH=/models/your-model.gguf
# Place your GGUF model in a directory, then update docker-compose.yaml
# to mount it, e.g.:
# volumes:
# - ./models:/models
# Start the server
docker compose --profile server up -d
# Test the server (OpenAI-compatible API)
curl http://localhost:8080/v1/models
# Chat completion request
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello!"}
]
}'
```
### 2. Server Mode with NVIDIA GPU
```bash
# Edit .env
# Set LLAMA_CPP_GPU_LAYERS=99 to offload all layers to GPU
# Start GPU-accelerated server
docker compose --profile cuda up -d
# The server will automatically use NVIDIA GPU
```
### 3. Server Mode with AMD GPU
```bash
# Edit .env
# Set LLAMA_CPP_GPU_LAYERS=99 to offload all layers to GPU
# Start GPU-accelerated server
docker compose --profile rocm up -d
# The server will automatically use AMD GPU
```
### 4. CLI Mode
```bash
# Edit .env and configure model path and prompt
# Run CLI
docker compose --profile cli up
# For interactive mode, use:
docker compose run --rm llama-cpp-cli \
-m /models/your-model.gguf \
-p "Your prompt here" \
-n 512
```
### 5. Full Toolkit (Model Conversion)
```bash
# Start the full container
docker compose --profile full up -d
# Execute commands inside the container
docker compose exec llama-cpp-full bash
# Inside container, you can use conversion tools
# Example: Convert a Hugging Face model
# python3 convert_hf_to_gguf.py /models/source-model --outfile /models/output.gguf
```
## Configuration
### Environment Variables
Key environment variables (see [.env.example](.env.example) for all options):
| Variable | Description | Default |
| -------------------------------- | ------------------------------------------------------------- | -------------------- |
| `LLAMA_CPP_SERVER_VARIANT` | Server image variant (server, server-cuda, server-rocm, etc.) | `server` |
| `LLAMA_CPP_MODEL_PATH` | Model file path inside container | `/models/model.gguf` |
| `LLAMA_CPP_CONTEXT_SIZE` | Context window size in tokens | `512` |
| `LLAMA_CPP_GPU_LAYERS` | Number of layers to offload to GPU (0=CPU only, 99=all) | `0` |
| `LLAMA_CPP_SERVER_PORT_OVERRIDE` | Server port on host | `8080` |
| `LLAMA_CPP_SERVER_MEMORY_LIMIT` | Memory limit for server | `8G` |
### Available Profiles
- `server`: CPU-only server
- `cuda`: NVIDIA GPU server (requires nvidia-container-toolkit)
- `rocm`: AMD GPU server (requires ROCm)
- `cli`: Command-line interface
- `full`: Full toolkit with model conversion tools
- `gpu`: Generic GPU profile (includes cuda and rocm)
### Image Variants
Each variant comes in multiple flavors:
- **server**: Only `llama-server` executable (API server)
- **light**: Only `llama-cli` and `llama-completion` executables
- **full**: Complete toolkit including model conversion tools
Backend options:
- Base (CPU)
- `-cuda` (NVIDIA GPU)
- `-rocm` (AMD GPU)
- `-musa` (Moore Threads GPU)
- `-intel` (Intel GPU with SYCL)
- `-vulkan` (Vulkan GPU)
## Server API
The server provides an OpenAI-compatible API:
- `GET /health` - Health check
- `GET /v1/models` - List available models
- `POST /v1/chat/completions` - Chat completion
- `POST /v1/completions` - Text completion
- `POST /v1/embeddings` - Generate embeddings
See the [llama.cpp server documentation](https://github.com/ggml-org/llama.cpp/blob/master/examples/server/README.md) for full API details.
## Model Sources
Download GGUF models from:
- [Hugging Face GGUF Models](https://huggingface.co/models?library=gguf)
- [TheBloke's GGUF Collection](https://huggingface.co/TheBloke)
- Convert your own models using the full toolkit
Popular quantization formats:
- `Q4_K_M`: Good balance of quality and size (recommended)
- `Q5_K_M`: Higher quality, larger size
- `Q8_0`: Very high quality, large size
- `Q2_K`: Smallest size, lower quality
## Resource Requirements
Minimum requirements by model size:
| Model Size | RAM (CPU) | VRAM (GPU) | Context Size |
| ---------- | --------- | ---------- | ------------ |
| 7B Q4_K_M | 6GB | 4GB | 2048 |
| 13B Q4_K_M | 10GB | 8GB | 2048 |
| 34B Q4_K_M | 24GB | 20GB | 2048 |
| 70B Q4_K_M | 48GB | 40GB | 2048 |
Larger context sizes require proportionally more memory.
## Performance Tuning
For CPU inference:
- Increase `LLAMA_CPP_SERVER_CPU_LIMIT` for more cores
- Optimize threads with `-t` flag (default: auto)
For GPU inference:
- Set `LLAMA_CPP_GPU_LAYERS=99` to offload all layers
- Increase context size for longer conversations
- Monitor GPU memory usage
## Security Notes
- The server binds to `0.0.0.0` by default - ensure proper network security
- No authentication is enabled by default
- Consider using a reverse proxy (nginx, Caddy) for production deployments
- Limit resource usage to prevent system exhaustion
## Troubleshooting
### Out of Memory
- Reduce `LLAMA_CPP_CONTEXT_SIZE`
- Use a smaller quantized model (e.g., Q4 instead of Q8)
- Reduce `LLAMA_CPP_GPU_LAYERS` if using GPU
### GPU Not Detected
**NVIDIA**: Verify nvidia-container-toolkit is installed:
```bash
docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi
```
**AMD**: Ensure ROCm drivers and `/dev/kfd`, `/dev/dri` are accessible.
### Slow Inference
- Check CPU/GPU utilization
- Increase resource limits in `.env`
- For GPU: Verify all layers are offloaded (`LLAMA_CPP_GPU_LAYERS=99`)
## Documentation
- [llama.cpp GitHub](https://github.com/ggml-org/llama.cpp)
- [Docker Documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/docker.md)
- [Server API Docs](https://github.com/ggml-org/llama.cpp/blob/master/examples/server/README.md)
## License
llama.cpp is released under the MIT License. See the [LICENSE](https://github.com/ggml-org/llama.cpp/blob/master/LICENSE) file for details.

244
src/llama.cpp/README.zh.md Normal file
View File

@@ -0,0 +1,244 @@
# llama.cpp
[English Documentation](README.md)
[llama.cpp](https://github.com/ggml-org/llama.cpp) 是一个高性能的 C/C++ 实现的大语言模型推理引擎,支持多种硬件加速器。
## 功能特性
- **高速推理**:优化的 C/C++ 实现,提供高效的 LLM 推理
- **多种后端**:支持 CPU、CUDANVIDIA、ROCmAMD、MUSA摩尔线程、Intel GPU、Vulkan
- **OpenAI 兼容 API**:服务器模式提供 OpenAI 兼容的 REST API
- **CLI 支持**:交互式命令行界面,方便快速测试
- **模型转换**:完整工具包包含模型转换和量化工具
- **GGUF 格式**:支持高效的 GGUF 模型格式
- **跨平台**:支持 Linuxx86-64、ARM64、s390x、Windows、macOS
## 前置要求
- 已安装 Docker 和 Docker Compose
- 至少 4GB 内存(推荐 8GB 以上)
- GPU 版本需要:
- **CUDA**NVIDIA GPU 及 [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit)
- **ROCm**AMD GPU 及相应的 ROCm 驱动
- **MUSA**:摩尔线程 GPU 及 mt-container-toolkit
- GGUF 格式的模型文件(例如从 [Hugging Face](https://huggingface.co/models?library=gguf) 下载)
## 快速开始
### 1. 服务器模式CPU
```bash
# 复制并配置环境变量
cp .env.example .env
# 编辑 .env 并设置模型路径
# LLAMA_CPP_MODEL_PATH=/models/your-model.gguf
# 将 GGUF 模型放在目录中,然后更新 docker-compose.yaml 挂载,例如:
# volumes:
# - ./models:/models
# 启动服务器
docker compose --profile server up -d
# 测试服务器OpenAI 兼容 API
curl http://localhost:8080/v1/models
# 聊天补全请求
curl http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "你好!"}
]
}'
```
### 2. 服务器模式NVIDIA GPU
```bash
# 编辑 .env
# 设置 LLAMA_CPP_GPU_LAYERS=99 将所有层卸载到 GPU
# 启动 GPU 加速服务器
docker compose --profile cuda up -d
# 服务器将自动使用 NVIDIA GPU
```
### 3. 服务器模式AMD GPU
```bash
# 编辑 .env
# 设置 LLAMA_CPP_GPU_LAYERS=99 将所有层卸载到 GPU
# 启动 GPU 加速服务器
docker compose --profile rocm up -d
# 服务器将自动使用 AMD GPU
```
### 4. CLI 模式
```bash
# 编辑 .env 并配置模型路径和提示词
# 运行 CLI
docker compose --profile cli up
# 交互模式:
docker compose run --rm llama-cpp-cli \
-m /models/your-model.gguf \
-p "你的提示词" \
-n 512
```
### 5. 完整工具包(模型转换)
```bash
# 启动完整容器
docker compose --profile full up -d
# 在容器内执行命令
docker compose exec llama-cpp-full bash
# 在容器内可以使用转换工具
# 示例:转换 Hugging Face 模型
# python3 convert_hf_to_gguf.py /models/source-model --outfile /models/output.gguf
```
## 配置说明
### 环境变量
主要环境变量(完整选项请查看 [.env.example](.env.example)
| 变量 | 说明 | 默认值 |
| -------------------------------- | ----------------------------------------------------- | -------------------- |
| `LLAMA_CPP_SERVER_VARIANT` | 服务器镜像变体server、server-cuda、server-rocm 等) | `server` |
| `LLAMA_CPP_MODEL_PATH` | 容器内模型文件路径 | `/models/model.gguf` |
| `LLAMA_CPP_CONTEXT_SIZE` | 上下文窗口大小token 数) | `512` |
| `LLAMA_CPP_GPU_LAYERS` | 卸载到 GPU 的层数0=仅 CPU99=全部) | `0` |
| `LLAMA_CPP_SERVER_PORT_OVERRIDE` | 主机端口 | `8080` |
| `LLAMA_CPP_SERVER_MEMORY_LIMIT` | 服务器内存限制 | `8G` |
### 可用配置文件
- `server`:仅 CPU 服务器
- `cuda`NVIDIA GPU 服务器(需要 nvidia-container-toolkit
- `rocm`AMD GPU 服务器(需要 ROCm
- `cli`:命令行界面
- `full`:包含模型转换工具的完整工具包
- `gpu`:通用 GPU 配置(包括 cuda 和 rocm
### 镜像变体
每个变体都有多种类型:
- **server**:仅包含 `llama-server` 可执行文件API 服务器)
- **light**:仅包含 `llama-cli``llama-completion` 可执行文件
- **full**:完整工具包,包括模型转换工具
后端选项:
- 基础版CPU
- `-cuda`NVIDIA GPU
- `-rocm`AMD GPU
- `-musa`(摩尔线程 GPU
- `-intel`Intel GPU支持 SYCL
- `-vulkan`Vulkan GPU
## 服务器 API
服务器提供 OpenAI 兼容的 API
- `GET /health` - 健康检查
- `GET /v1/models` - 列出可用模型
- `POST /v1/chat/completions` - 聊天补全
- `POST /v1/completions` - 文本补全
- `POST /v1/embeddings` - 生成嵌入向量
完整 API 详情请参阅 [llama.cpp 服务器文档](https://github.com/ggml-org/llama.cpp/blob/master/examples/server/README.md)。
## 模型来源
下载 GGUF 模型:
- [Hugging Face GGUF 模型](https://huggingface.co/models?library=gguf)
- [TheBloke 的 GGUF 合集](https://huggingface.co/TheBloke)
- 使用完整工具包转换您自己的模型
常用量化格式:
- `Q4_K_M`:质量和大小的良好平衡(推荐)
- `Q5_K_M`:更高质量,更大体积
- `Q8_0`:非常高的质量,大体积
- `Q2_K`:最小体积,较低质量
## 资源需求
按模型大小的最低要求:
| 模型大小 | 内存CPU | 显存GPU | 上下文大小 |
| ---------- | ----------- | ----------- | ---------- |
| 7B Q4_K_M | 6GB | 4GB | 2048 |
| 13B Q4_K_M | 10GB | 8GB | 2048 |
| 34B Q4_K_M | 24GB | 20GB | 2048 |
| 70B Q4_K_M | 48GB | 40GB | 2048 |
更大的上下文大小需要成比例的更多内存。
## 性能调优
CPU 推理:
- 增加 `LLAMA_CPP_SERVER_CPU_LIMIT` 以使用更多核心
- 使用 `-t` 参数优化线程数(默认:自动)
GPU 推理:
- 设置 `LLAMA_CPP_GPU_LAYERS=99` 卸载所有层
- 增加上下文大小以支持更长对话
- 监控 GPU 内存使用
## 安全注意事项
- 服务器默认绑定到 `0.0.0.0` - 请确保网络安全
- 默认未启用身份验证
- 生产环境建议使用反向代理nginx、Caddy
- 限制资源使用以防止系统资源耗尽
## 故障排除
### 内存不足
- 减小 `LLAMA_CPP_CONTEXT_SIZE`
- 使用更小的量化模型(例如 Q4 而不是 Q8
- 减少 `LLAMA_CPP_GPU_LAYERS`(如果使用 GPU
### GPU 未检测到
**NVIDIA**:验证 nvidia-container-toolkit 是否已安装:
```bash
docker run --rm --gpus all nvidia/cuda:12.4.0-base-ubuntu22.04 nvidia-smi
```
**AMD**:确保 ROCm 驱动已安装且 `/dev/kfd``/dev/dri` 可访问。
### 推理速度慢
- 检查 CPU/GPU 利用率
- 增加 `.env` 中的资源限制
- GPU验证所有层都已卸载`LLAMA_CPP_GPU_LAYERS=99`
## 文档
- [llama.cpp GitHub](https://github.com/ggml-org/llama.cpp)
- [Docker 文档](https://github.com/ggml-org/llama.cpp/blob/master/docs/docker.md)
- [服务器 API 文档](https://github.com/ggml-org/llama.cpp/blob/master/examples/server/README.md)
## 许可证
llama.cpp 使用 MIT 许可证发布。详情请参阅 [LICENSE](https://github.com/ggml-org/llama.cpp/blob/master/LICENSE) 文件。

View File

@@ -0,0 +1,210 @@
# Docker Compose configuration for llama.cpp
# https://github.com/ggml-org/llama.cpp
# LLM inference in C/C++ with support for various hardware accelerators
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
# llama.cpp server - OpenAI-compatible API server
# Variant: server (CPU), server-cuda (NVIDIA GPU), server-rocm (AMD GPU)
llama-cpp-server:
<<: *defaults
image: ${GHCR_REGISTRY:-ghcr.io/}ggml-org/llama.cpp:${LLAMA_CPP_SERVER_VARIANT:-server}
ports:
- "${LLAMA_CPP_SERVER_PORT_OVERRIDE:-8080}:8080"
volumes:
- llama_cpp_models:/models
command:
- "-m"
- "${LLAMA_CPP_MODEL_PATH:-/models/model.gguf}"
- "--port"
- "8080"
- "--host"
- "0.0.0.0"
- "-n"
- "${LLAMA_CPP_CONTEXT_SIZE:-512}"
- "--n-gpu-layers"
- "${LLAMA_CPP_GPU_LAYERS:-0}"
environment:
- TZ=${TZ:-UTC}
healthcheck:
test:
[
"CMD",
"wget",
"--quiet",
"--tries=1",
"--spider",
"http://localhost:8080/health",
]
interval: 30s
timeout: 10s
retries: 3
start_period: 30s
deploy:
resources:
limits:
cpus: ${LLAMA_CPP_SERVER_CPU_LIMIT:-4.0}
memory: ${LLAMA_CPP_SERVER_MEMORY_LIMIT:-8G}
reservations:
cpus: ${LLAMA_CPP_SERVER_CPU_RESERVATION:-2.0}
memory: ${LLAMA_CPP_SERVER_MEMORY_RESERVATION:-4G}
profiles:
- server
# llama.cpp server with NVIDIA GPU support
llama-cpp-server-cuda:
<<: *defaults
image: ${GHCR_REGISTRY:-ghcr.io/}ggml-org/llama.cpp:server-cuda
ports:
- "${LLAMA_CPP_SERVER_PORT_OVERRIDE:-8080}:8080"
volumes:
- llama_cpp_models:/models
command:
- "-m"
- "${LLAMA_CPP_MODEL_PATH:-/models/model.gguf}"
- "--port"
- "8080"
- "--host"
- "0.0.0.0"
- "-n"
- "${LLAMA_CPP_CONTEXT_SIZE:-512}"
- "--n-gpu-layers"
- "${LLAMA_CPP_GPU_LAYERS:-99}"
environment:
- TZ=${TZ:-UTC}
healthcheck:
test:
[
"CMD",
"wget",
"--quiet",
"--tries=1",
"--spider",
"http://localhost:8080/health",
]
interval: 30s
timeout: 10s
retries: 3
start_period: 30s
deploy:
resources:
limits:
cpus: ${LLAMA_CPP_SERVER_CPU_LIMIT:-4.0}
memory: ${LLAMA_CPP_SERVER_MEMORY_LIMIT:-8G}
reservations:
cpus: ${LLAMA_CPP_SERVER_CPU_RESERVATION:-2.0}
memory: ${LLAMA_CPP_SERVER_MEMORY_RESERVATION:-4G}
devices:
- driver: nvidia
count: ${LLAMA_CPP_GPU_COUNT:-1}
capabilities: [gpu]
profiles:
- gpu
- cuda
# llama.cpp server with AMD ROCm GPU support
llama-cpp-server-rocm:
<<: *defaults
image: ${GHCR_REGISTRY:-ghcr.io/}ggml-org/llama.cpp:server-rocm
ports:
- "${LLAMA_CPP_SERVER_PORT_OVERRIDE:-8080}:8080"
volumes:
- llama_cpp_models:/models
devices:
- /dev/kfd
- /dev/dri
command:
- "-m"
- "${LLAMA_CPP_MODEL_PATH:-/models/model.gguf}"
- "--port"
- "8080"
- "--host"
- "0.0.0.0"
- "-n"
- "${LLAMA_CPP_CONTEXT_SIZE:-512}"
- "--n-gpu-layers"
- "${LLAMA_CPP_GPU_LAYERS:-99}"
environment:
- TZ=${TZ:-UTC}
healthcheck:
test:
[
"CMD",
"wget",
"--quiet",
"--tries=1",
"--spider",
"http://localhost:8080/health",
]
interval: 30s
timeout: 10s
retries: 3
start_period: 30s
deploy:
resources:
limits:
cpus: ${LLAMA_CPP_SERVER_CPU_LIMIT:-4.0}
memory: ${LLAMA_CPP_SERVER_MEMORY_LIMIT:-8G}
reservations:
cpus: ${LLAMA_CPP_SERVER_CPU_RESERVATION:-2.0}
memory: ${LLAMA_CPP_SERVER_MEMORY_RESERVATION:-4G}
profiles:
- gpu
- rocm
# llama.cpp CLI (light) - Interactive command-line interface
llama-cpp-cli:
<<: *defaults
image: ${GHCR_REGISTRY:-ghcr.io/}ggml-org/llama.cpp:${LLAMA_CPP_CLI_VARIANT:-light}
volumes:
- llama_cpp_models:/models
entrypoint: /app/llama-cli
command:
- "-m"
- "${LLAMA_CPP_MODEL_PATH:-/models/model.gguf}"
- "-p"
- "${LLAMA_CPP_PROMPT:-Hello, how are you?}"
- "-n"
- "${LLAMA_CPP_CONTEXT_SIZE:-512}"
environment:
- TZ=${TZ:-UTC}
deploy:
resources:
limits:
cpus: ${LLAMA_CPP_CLI_CPU_LIMIT:-2.0}
memory: ${LLAMA_CPP_CLI_MEMORY_LIMIT:-4G}
reservations:
cpus: ${LLAMA_CPP_CLI_CPU_RESERVATION:-1.0}
memory: ${LLAMA_CPP_CLI_MEMORY_RESERVATION:-2G}
profiles:
- cli
# llama.cpp full - Complete toolkit including model conversion tools
llama-cpp-full:
<<: *defaults
image: ${GHCR_REGISTRY:-ghcr.io/}ggml-org/llama.cpp:${LLAMA_CPP_FULL_VARIANT:-full}
volumes:
- llama_cpp_models:/models
command: ["sleep", "infinity"]
environment:
- TZ=${TZ:-UTC}
deploy:
resources:
limits:
cpus: ${LLAMA_CPP_FULL_CPU_LIMIT:-2.0}
memory: ${LLAMA_CPP_FULL_MEMORY_LIMIT:-4G}
reservations:
cpus: ${LLAMA_CPP_FULL_CPU_RESERVATION:-1.0}
memory: ${LLAMA_CPP_FULL_MEMORY_RESERVATION:-2G}
profiles:
- full
volumes:
llama_cpp_models:

27
src/lmdeploy/.env.example Normal file
View File

@@ -0,0 +1,27 @@
# LMDeploy Version
# Find more tags at: https://hub.docker.com/r/openmmlab/lmdeploy/tags
LMDEPLOY_VERSION=v0.11.1-cu12.8
# Host port override
LMDEPLOY_PORT_OVERRIDE=23333
# Model path or HuggingFace model ID
# Examples:
# - internlm/internlm2-chat-1_8b
# - Qwen/Qwen2.5-7B-Instruct
LMDEPLOY_MODEL=internlm/internlm2-chat-1_8b
# HuggingFace token for private models
HF_TOKEN=
# Resource limits
LMDEPLOY_CPU_LIMIT=4.0
LMDEPLOY_MEMORY_LIMIT=8G
LMDEPLOY_CPU_RESERVATION=2.0
LMDEPLOY_MEMORY_RESERVATION=4G
# Shared memory size (required for some models)
LMDEPLOY_SHM_SIZE=4g
# Timezone
TZ=UTC

31
src/lmdeploy/README.md Normal file
View File

@@ -0,0 +1,31 @@
# LMDeploy Docker Compose
[LMDeploy](https://github.com/InternLM/lmdeploy) is a toolkit for compressing, deploying, and serving LLMs.
## Quick Start
1. (Optional) Configure the model and port in `.env`.
2. Start the service:
```bash
docker compose up -d
```
3. Access the OpenAI compatible API at `http://localhost:23333/v1`.
## Configuration
| Environment Variable | Default | Description |
| ------------------------ | ------------------------------ | ------------------------------------ |
| `LMDEPLOY_VERSION` | `v0.11.1-cu12.8` | LMDeploy image version |
| `LMDEPLOY_PORT_OVERRIDE` | `23333` | Host port for the API server |
| `LMDEPLOY_MODEL` | `internlm/internlm2-chat-1_8b` | HuggingFace model ID or local path |
| `HF_TOKEN` | | HuggingFace token for private models |
## Monitoring Health
The service includes a health check that verifies if the OpenAI `/v1/models` endpoint is responsive.
## GPU Support
By default, this configuration reserves 1 NVIDIA GPU. Ensure you have the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) installed on your host.

31
src/lmdeploy/README.zh.md Normal file
View File

@@ -0,0 +1,31 @@
# LMDeploy Docker Compose
[LMDeploy](https://github.com/InternLM/lmdeploy) 是一个用于压缩、部署和服务大语言模型LLM的工具包。
## 快速开始
1. (可选)在 `.env` 中配置模型和端口。
2. 启动服务:
```bash
docker compose up -d
```
3. 通过 `http://localhost:23333/v1` 访问与 OpenAI 兼容的 API。
## 配置项
| 环境变量 | 默认值 | 说明 |
| ------------------------ | ------------------------------ | ------------------------------------ |
| `LMDEPLOY_VERSION` | `v0.11.1-cu12.8` | LMDeploy 镜像版本 |
| `LMDEPLOY_PORT_OVERRIDE` | `23333` | API 服务器的主机端口 |
| `LMDEPLOY_MODEL` | `internlm/internlm2-chat-1_8b` | HuggingFace 模型 ID 或本地路径 |
| `HF_TOKEN` | | 用于访问私有模型的 HuggingFace Token |
## 健康检查
该配置包含健康检查,用于验证 OpenAI `/v1/models` 接口是否响应。
## GPU 支持
默认情况下,此配置会预留 1 个 NVIDIA GPU。请确保您的主机已安装 [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)。

View File

@@ -0,0 +1,50 @@
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
lmdeploy:
<<: *defaults
image: ${GLOBAL_REGISTRY:-}openmmlab/lmdeploy:${LMDEPLOY_VERSION:-v0.11.1-cu12.8}
ports:
- "${LMDEPLOY_PORT_OVERRIDE:-23333}:23333"
volumes:
- lmdeploy_data:/root/.cache
environment:
- TZ=${TZ:-UTC}
- HF_TOKEN=${HF_TOKEN:-}
command:
- lmdeploy
- serve
- api_server
- ${LMDEPLOY_MODEL:-internlm/internlm2-chat-1_8b}
- --server-name
- "0.0.0.0"
- --server-port
- "23333"
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:23333/v1/models"]
interval: 30s
timeout: 10s
retries: 3
start_period: 60s
deploy:
resources:
limits:
cpus: ${LMDEPLOY_CPU_LIMIT:-4.0}
memory: ${LMDEPLOY_MEMORY_LIMIT:-8G}
reservations:
cpus: ${LMDEPLOY_CPU_RESERVATION:-2.0}
memory: ${LMDEPLOY_MEMORY_RESERVATION:-4G}
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
shm_size: ${LMDEPLOY_SHM_SIZE:-4g}
volumes:
lmdeploy_data:

31
src/opencode/.env.example Normal file
View File

@@ -0,0 +1,31 @@
# OpenCode Version
OPENCODE_VERSION=1.1.27
# Host Port Override
OPENCODE_PORT_OVERRIDE=4096
# Project Directory to mount (absolute or relative path)
# This is where OpenCode will perform coding tasks
OPENCODE_PROJECT_DIR=./project
# Timezone
TZ=UTC
# LLM Provider API Keys
# You need at least one of these to use OpenCode
ANTHROPIC_API_KEY=
OPENAI_API_KEY=
GEMINI_API_KEY=
DEEPSEEK_API_KEY=
GROQ_API_KEY=
TOGETHER_API_KEY=
MISTRAL_API_KEY=
# Optional: Inline JSON config content
# OPENCODE_CONFIG_CONTENT={"theme": "opencode", "autoupdate": false}
# Resource Limits
OPENCODE_CPU_LIMIT=1.0
OPENCODE_MEMORY_LIMIT=2G
OPENCODE_CPU_RESERVATION=0.25
OPENCODE_MEMORY_RESERVATION=512M

42
src/opencode/README.md Normal file
View File

@@ -0,0 +1,42 @@
# OpenCode
[English](./README.md) | [中文](./README.zh.md)
[OpenCode](https://github.com/anomalyco/opencode) is the open source AI coding agent built for the terminal and web. It allows you to use various LLM providers to automate coding tasks in your local or remote projects.
## Usage
1. Copy `.env.example` to `.env`.
2. Set your preferred LLM provider API key in `.env` (e.g., `ANTHROPIC_API_KEY`).
3. Set `OPENCODE_PROJECT_DIR` to the path of the project you want the agent to work on.
4. Run the service:
```bash
docker compose up -d
```
5. Access the web interface at `http://localhost:4096`.
## Configuration
- `OPENCODE_VERSION`: The version of the OpenCode image (default: `1.1.27`).
- `OPENCODE_PORT_OVERRIDE`: The host port to expose the web interface (default: `4096`).
- `OPENCODE_PROJECT_DIR`: Path to the project codebase you want the agent to have access to.
- `ANTHROPIC_API_KEY`: API key for Anthropic Claude models.
- `OPENAI_API_KEY`: API key for OpenAI models.
- `GEMINI_API_KEY`: API key for Google Gemini models.
- `DEEPSEEK_API_KEY`: API key for DeepSeek models.
## Volumes
- `opencode_data`: Stores configuration, session data, and cache.
- Mounts the target project directory to `/app`.
## Resources
Default limits:
- CPU: 1.0
- Memory: 2G
You can override these in your `.env` file using `OPENCODE_CPU_LIMIT` and `OPENCODE_MEMORY_LIMIT`.

42
src/opencode/README.zh.md Normal file
View File

@@ -0,0 +1,42 @@
# OpenCode
[English](./README.md) | [中文](./README.zh.md)
[OpenCode](https://github.com/anomalyco/opencode) 是一个为终端和 Web 构建的开源 AI 编程助手。它允许你使用多种大语言模型LLM提供商来自动执行本地或远程项目中的编码任务。
## 使用方法
1.`.env.example` 复制为 `.env`
2.`.env` 中设置你偏好的 LLM 提供商 API 密钥(例如 `ANTHROPIC_API_KEY`)。
3.`OPENCODE_PROJECT_DIR` 设置为你希望助手工作的项目路径。
4. 启动服务:
```bash
docker compose up -d
```
5. 在浏览器中访问 `http://localhost:4096` 进入 Web 界面。
## 配置项
- `OPENCODE_VERSION`OpenCode 镜像版本(默认为 `1.1.27`)。
- `OPENCODE_PORT_OVERRIDE`:映射到宿主机的 Web 端口(默认为 `4096`)。
- `OPENCODE_PROJECT_DIR`:助手有权访问的项目代码库路径。
- `ANTHROPIC_API_KEY`Anthropic Claude 模型的 API 密钥。
- `OPENAI_API_KEY`OpenAI 模型的 API 密钥。
- `GEMINI_API_KEY`Google Gemini 模型的 API 密钥。
- `DEEPSEEK_API_KEY`DeepSeek 模型的 API 密钥。
## 数据卷
- `opencode_data`:用于存储配置、会话数据和缓存。
- 将目标项目目录挂载到容器内的 `/app` 路径。
## 资源限制
默认限制:
- CPU1.0
- 内存2G
你可以通过 `.env` 文件中的 `OPENCODE_CPU_LIMIT` 和 `OPENCODE_MEMORY_LIMIT` 来覆盖这些默认值。

View File

@@ -0,0 +1,54 @@
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
opencode:
<<: *defaults
image: ${GLOBAL_REGISTRY:-}ghcr.io/anomalyco/opencode:${OPENCODE_VERSION:-1.1.27}
command: web --hostname 0.0.0.0 --port 4096
ports:
- "${OPENCODE_PORT_OVERRIDE:-4096}:4096"
volumes:
- opencode_data:/root/.opencode
- ${OPENCODE_PROJECT_DIR:-./project}:/app
environment:
- TZ=${TZ:-UTC}
- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY:-}
- OPENAI_API_KEY=${OPENAI_API_KEY:-}
- GEMINI_API_KEY=${GEMINI_API_KEY:-}
- DEEPSEEK_API_KEY=${DEEPSEEK_API_KEY:-}
- GROQ_API_KEY=${GROQ_API_KEY:-}
- TOGETHER_API_KEY=${TOGETHER_API_KEY:-}
- MISTRAL_API_KEY=${MISTRAL_API_KEY:-}
- OPENCODE_CONFIG_CONTENT=${OPENCODE_CONFIG_CONTENT:-}
working_dir: /app
healthcheck:
test:
[
"CMD",
"wget",
"--quiet",
"--tries=1",
"--spider",
"http://localhost:4096/",
]
interval: 30s
timeout: 10s
retries: 3
start_period: 30s
deploy:
resources:
limits:
cpus: ${OPENCODE_CPU_LIMIT:-1.0}
memory: ${OPENCODE_MEMORY_LIMIT:-2G}
reservations:
cpus: ${OPENCODE_CPU_RESERVATION:-0.25}
memory: ${OPENCODE_MEMORY_RESERVATION:-512M}
volumes:
opencode_data:

View File

@@ -28,7 +28,15 @@ services:
cpus: ${OPENLIST_CPU_RESERVATION:-0.25} cpus: ${OPENLIST_CPU_RESERVATION:-0.25}
memory: ${OPENLIST_MEMORY_RESERVATION:-256M} memory: ${OPENLIST_MEMORY_RESERVATION:-256M}
healthcheck: healthcheck:
test: ["CMD", "wget", "--no-verbose", "--tries=1", "--spider", "http://localhost:5244/"] test:
[
"CMD",
"wget",
"--no-verbose",
"--tries=1",
"--spider",
"http://localhost:5244/",
]
interval: 30s interval: 30s
timeout: 10s timeout: 10s
retries: 3 retries: 3

View File

@@ -40,7 +40,8 @@ services:
cpus: ${OPENSEARCH_CPU_RESERVATION:-1.0} cpus: ${OPENSEARCH_CPU_RESERVATION:-1.0}
memory: ${OPENSEARCH_MEMORY_RESERVATION:-1G} memory: ${OPENSEARCH_MEMORY_RESERVATION:-1G}
healthcheck: healthcheck:
test: ["CMD-SHELL", "curl -f http://localhost:9200/_cluster/health || exit 1"] test:
["CMD-SHELL", "curl -f http://localhost:9200/_cluster/health || exit 1"]
interval: 30s interval: 30s
timeout: 10s timeout: 10s
retries: 3 retries: 3
@@ -67,7 +68,15 @@ services:
cpus: ${OPENSEARCH_DASHBOARDS_CPU_RESERVATION:-0.5} cpus: ${OPENSEARCH_DASHBOARDS_CPU_RESERVATION:-0.5}
memory: ${OPENSEARCH_DASHBOARDS_MEMORY_RESERVATION:-512M} memory: ${OPENSEARCH_DASHBOARDS_MEMORY_RESERVATION:-512M}
healthcheck: healthcheck:
test: ["CMD", "wget", "--no-verbose", "--tries=1", "--spider", "http://localhost:5601/api/status"] test:
[
"CMD",
"wget",
"--no-verbose",
"--tries=1",
"--spider",
"http://localhost:5601/api/status",
]
interval: 30s interval: 30s
timeout: 10s timeout: 10s
retries: 3 retries: 3

View File

@@ -3,7 +3,7 @@
COMPOSE_PROFILES=sqlite COMPOSE_PROFILES=sqlite
# Phoenix version # Phoenix version
PHOENIX_VERSION=12.28.1-nonroot PHOENIX_VERSION=12.31.2-nonroot
# Timezone # Timezone
TZ=UTC TZ=UTC

View File

@@ -32,7 +32,7 @@ This project supports two modes of operation via Docker Compose profiles:
| Variable Name | Description | Default Value | | Variable Name | Description | Default Value |
| -------------------------------- | ---------------------------------------- | ----------------- | | -------------------------------- | ---------------------------------------- | ----------------- |
| COMPOSE_PROFILES | Active profiles (`sqlite` or `postgres`) | `sqlite` | | COMPOSE_PROFILES | Active profiles (`sqlite` or `postgres`) | `sqlite` |
| PHOENIX_VERSION | Phoenix image version | `12.28.1-nonroot` | | PHOENIX_VERSION | Phoenix image version | `12.31.2-nonroot` |
| PHOENIX_PORT_OVERRIDE | Host port for Phoenix UI and HTTP API | `6006` | | PHOENIX_PORT_OVERRIDE | Host port for Phoenix UI and HTTP API | `6006` |
| PHOENIX_GRPC_PORT_OVERRIDE | Host port for OTLP gRPC collector | `4317` | | PHOENIX_GRPC_PORT_OVERRIDE | Host port for OTLP gRPC collector | `4317` |
| PHOENIX_PROMETHEUS_PORT_OVERRIDE | Host port for Prometheus metrics | `9090` | | PHOENIX_PROMETHEUS_PORT_OVERRIDE | Host port for Prometheus metrics | `9090` |

View File

@@ -32,7 +32,7 @@ Arize Phoenix 是一个开源的 AI 可观测性平台,专为 LLM 应用设计
| 变量名 | 描述 | 默认值 | | 变量名 | 描述 | 默认值 |
| -------------------------------- | ---------------------------------------- | ----------------- | | -------------------------------- | ---------------------------------------- | ----------------- |
| COMPOSE_PROFILES | 激活的配置文件(`sqlite``postgres` | `sqlite` | | COMPOSE_PROFILES | 激活的配置文件(`sqlite``postgres` | `sqlite` |
| PHOENIX_VERSION | Phoenix 镜像版本 | `12.28.1-nonroot` | | PHOENIX_VERSION | Phoenix 镜像版本 | `12.31.2-nonroot` |
| PHOENIX_PORT_OVERRIDE | Phoenix UI 和 HTTP API 的主机端口 | `6006` | | PHOENIX_PORT_OVERRIDE | Phoenix UI 和 HTTP API 的主机端口 | `6006` |
| PHOENIX_GRPC_PORT_OVERRIDE | OTLP gRPC 采集器的主机端口 | `4317` | | PHOENIX_GRPC_PORT_OVERRIDE | OTLP gRPC 采集器的主机端口 | `4317` |
| PHOENIX_PROMETHEUS_PORT_OVERRIDE | Prometheus 指标的主机端口 | `9090` | | PHOENIX_PROMETHEUS_PORT_OVERRIDE | Prometheus 指标的主机端口 | `9090` |

View File

@@ -11,7 +11,7 @@ x-defaults: &defaults
x-phoenix-common: &phoenix-common x-phoenix-common: &phoenix-common
<<: *defaults <<: *defaults
image: ${GLOBAL_REGISTRY:-}arizephoenix/phoenix:${PHOENIX_VERSION:-12.28.1-nonroot} image: ${GLOBAL_REGISTRY:-}arizephoenix/phoenix:${PHOENIX_VERSION:-12.31.2-nonroot}
ports: ports:
- "${PHOENIX_PORT_OVERRIDE:-6006}:6006" # UI and OTLP HTTP collector - "${PHOENIX_PORT_OVERRIDE:-6006}:6006" # UI and OTLP HTTP collector
- "${PHOENIX_GRPC_PORT_OVERRIDE:-4317}:4317" # OTLP gRPC collector - "${PHOENIX_GRPC_PORT_OVERRIDE:-4317}:4317" # OTLP gRPC collector

View File

@@ -0,0 +1,15 @@
# Pogocache Version
POGOCACHE_VERSION=1.3.1
# Host port override
POGOCACHE_PORT_OVERRIDE=9401
# Resource limits
POGOCACHE_CPU_LIMIT=0.50
POGOCACHE_MEMORY_LIMIT=512M
POGOCACHE_CPU_RESERVATION=0.10
POGOCACHE_MEMORY_RESERVATION=128M
# Extra arguments for pogocache
# Example: --auth mypassword --threads 4
POGOCACHE_EXTRA_ARGS=

35
src/pogocache/README.md Normal file
View File

@@ -0,0 +1,35 @@
# Pogocache
[Pogocache](https://github.com/tidwall/pogocache) is fast caching software built from scratch with a focus on low latency and cpu efficiency. It is a high-performance, multi-protocol Redis alternative.
## Features
- **Fast**: Faster than Memcached, Valkey, Redis, Dragonfly, and Garnet.
- **Multi-protocol**: Supports Redis RESP, Memcached, PostgreSQL wire protocol, and HTTP.
- **Persistence**: Supports AOF-style persistence.
- **Resource Efficient**: Low CPU and memory overhead.
## Deployment
```bash
docker compose up -d
```
## Configuration
| Variable | Default | Description |
| ------------------------- | ------- | --------------------------------------------- |
| `POGOCACHE_VERSION` | `1.3.1` | Pogocache image version |
| `POGOCACHE_PORT_OVERRIDE` | `9401` | Host port for Pogocache |
| `POGOCACHE_EXTRA_ARGS` | | Additional CLI arguments (e.g. `--auth pass`) |
## Accessing Pogocache
- **Redis**: `redis-cli -p 9401`
- **Postgres**: `psql -h localhost -p 9401`
- **HTTP**: `curl http://localhost:9401/key`
- **Memcached**: `telnet localhost 9401`
## Persistence
By default, the data is persisted to a named volume `pogocache_data` at `/data/pogocache.db`.

View File

@@ -0,0 +1,35 @@
# Pogocache
[Pogocache](https://github.com/tidwall/pogocache) 是一款从零开始构建的高速缓存软件,专注于低延迟和 CPU 效率。它是一个高性能、多协议的 Redis 替代方案。
## 特性
- **极速**:比 Memcached、Valkey、Redis、Dragonfly 和 Garnet 更快。
- **多协议支持**:支持 Redis RESP、Memcached、PostgreSQL 线缆协议和 HTTP。
- **持久化**:支持 AOF 风格的持久化。
- **资源高效**:极低的 CPU 和内存开销。
## 部署
```bash
docker compose up -d
```
## 配置说明
| 变量名 | 默认值 | 描述 |
| ------------------------- | ------- | -------------------------------------- |
| `POGOCACHE_VERSION` | `1.3.1` | Pogocache 镜像版本 |
| `POGOCACHE_PORT_OVERRIDE` | `9401` | 主机端口 |
| `POGOCACHE_EXTRA_ARGS` | | 额外的命令行参数(例如 `--auth pass` |
## 访问方式
- **Redis**`redis-cli -p 9401`
- **Postgres**`psql -h localhost -p 9401`
- **HTTP**`curl http://localhost:9401/key`
- **Memcached**`telnet localhost 9401`
## 持久化
默认情况下,数据持久化到命名卷 `pogocache_data` 中的 `/data/pogocache.db`

View File

@@ -0,0 +1,42 @@
# Docker Compose for Pogocache
# Pogocache is fast caching software built from scratch with a focus on low latency and cpu efficiency.
# See: https://github.com/tidwall/pogocache
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 10m
max-file: "3"
services:
pogocache:
<<: *defaults
image: ${GLOBAL_REGISTRY:-}pogocache/pogocache:${POGOCACHE_VERSION:-1.3.1}
ports:
- "${POGOCACHE_PORT_OVERRIDE:-9401}:9401"
environment:
- TZ=${TZ:-UTC}
volumes:
- pogocache_data:/data
command: >
${POGOCACHE_EXTRA_ARGS:-}
--persist /data/pogocache.db
healthcheck:
test: ["CMD-SHELL", "nc -z localhost 9401 || exit 1"]
interval: 10s
timeout: 5s
retries: 5
start_period: 5s
deploy:
resources:
limits:
cpus: ${POGOCACHE_CPU_LIMIT:-0.50}
memory: ${POGOCACHE_MEMORY_LIMIT:-512M}
reservations:
cpus: ${POGOCACHE_CPU_RESERVATION:-0.10}
memory: ${POGOCACHE_MEMORY_RESERVATION:-128M}
volumes:
pogocache_data:

View File

@@ -1,7 +1,7 @@
# Renovate Configuration # Renovate Configuration
# Image version # Image version
RENOVATE_VERSION=42.52.5-full RENOVATE_VERSION=42.85.4-full
# Global registry prefix (optional, e.g., your.registry.com/) # Global registry prefix (optional, e.g., your.registry.com/)
GLOBAL_REGISTRY= GLOBAL_REGISTRY=

View File

@@ -53,7 +53,7 @@ Key environment variables in `.env`:
| Variable | Description | Default | | Variable | Description | Default |
| ----------------------- | ----------------------- | -------------- | | ----------------------- | ----------------------- | -------------- |
| `RENOVATE_VERSION` | Renovate image version | `42.52.5-full` | | `RENOVATE_VERSION` | Renovate image version | `42.85.4-full` |
| `RENOVATE_PLATFORM` | Platform type | `github` | | `RENOVATE_PLATFORM` | Platform type | `github` |
| `RENOVATE_TOKEN` | Authentication token | **(required)** | | `RENOVATE_TOKEN` | Authentication token | **(required)** |
| `RENOVATE_REPOSITORIES` | Repositories to process | `''` | | `RENOVATE_REPOSITORIES` | Repositories to process | `''` |

View File

@@ -53,7 +53,7 @@ Renovate 是一个自动化依赖更新工具,当有新版本可用时,它
| 变量 | 描述 | 默认值 | | 变量 | 描述 | 默认值 |
| ----------------------- | ----------------- | -------------- | | ----------------------- | ----------------- | -------------- |
| `RENOVATE_VERSION` | Renovate 镜像版本 | `42.52.5-full` | | `RENOVATE_VERSION` | Renovate 镜像版本 | `42.85.4-full` |
| `RENOVATE_PLATFORM` | 平台类型 | `github` | | `RENOVATE_PLATFORM` | 平台类型 | `github` |
| `RENOVATE_TOKEN` | 身份验证令牌 | **(必需)** | | `RENOVATE_TOKEN` | 身份验证令牌 | **(必需)** |
| `RENOVATE_REPOSITORIES` | 要处理的仓库 | `''` | | `RENOVATE_REPOSITORIES` | 要处理的仓库 | `''` |

View File

@@ -12,7 +12,7 @@ x-defaults: &defaults
services: services:
renovate: renovate:
<<: *defaults <<: *defaults
image: ${GLOBAL_REGISTRY:-}renovate/renovate:${RENOVATE_VERSION:-42.52.5-full} image: ${GLOBAL_REGISTRY:-}renovate/renovate:${RENOVATE_VERSION:-42.85.4-full}
# Renovate runs as a scheduled job, not a continuous service # Renovate runs as a scheduled job, not a continuous service
# Use 'docker compose run --rm renovate' to execute manually # Use 'docker compose run --rm renovate' to execute manually

48
src/selenium/.env.example Normal file
View File

@@ -0,0 +1,48 @@
# Selenium Standalone Configuration
# Image Registry (optional)
# GLOBAL_REGISTRY=
# Selenium Version (stable version tag recommended)
# Visit https://hub.docker.com/r/selenium/standalone-chrome/tags for available versions
# Format: <browser-version>-<date> or <browser-version>-chromedriver-<driver-version>-grid-<grid-version>-<date>
SELENIUM_VERSION=144.0-20260120
# Shared Memory Size (required for browser stability)
# Chrome and Firefox need sufficient shared memory to prevent crashes
SELENIUM_SHM_SIZE=2g
# Port Configuration
# Selenium Grid HTTP port
SELENIUM_GRID_PORT_OVERRIDE=4444
# VNC port for viewing browser sessions (browser debugger)
SELENIUM_VNC_PORT_OVERRIDE=7900
# Timezone
TZ=UTC
# Screen Resolution Settings
SE_SCREEN_WIDTH=1920
SE_SCREEN_HEIGHT=1080
SE_SCREEN_DEPTH=24
SE_SCREEN_DPI=96
# VNC Configuration
# Password for VNC access (default: secret)
SE_VNC_PASSWORD=secret
# Session Configuration
# Maximum concurrent sessions per container
SE_NODE_MAX_SESSIONS=1
# Session timeout in seconds (default: 300)
SE_NODE_SESSION_TIMEOUT=300
# Xvfb Configuration
# Start virtual display server (required for headless mode in Chrome/Chromium v127+)
SE_START_XVFB=true
# Resource Limits
SELENIUM_CPU_LIMIT=2.0
SELENIUM_MEMORY_LIMIT=2G
SELENIUM_CPU_RESERVATION=1.0
SELENIUM_MEMORY_RESERVATION=1G

281
src/selenium/README.md Normal file
View File

@@ -0,0 +1,281 @@
# Selenium Standalone with Chrome
[![Docker Image](https://img.shields.io/docker/v/selenium/standalone-chrome?sort=semver)](https://hub.docker.com/r/selenium/standalone-chrome)
[![Docker Pulls](https://img.shields.io/docker/pulls/selenium/standalone-chrome)](https://hub.docker.com/r/selenium/standalone-chrome)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/SeleniumHQ/docker-selenium/blob/trunk/LICENSE.md)
Selenium Grid in Standalone mode with Chrome browser for browser automation at scale.
## Quick Start
```bash
# Start the service
docker compose up -d
# Verify the service is running
docker compose ps
# View logs
docker compose logs -f
# Stop the service
docker compose down
```
## Service Information
### Ports
| Port | Service | Description |
| ---- | ------------- | -------------------------------------------- |
| 4444 | Selenium Grid | HTTP endpoint for WebDriver |
| 7900 | noVNC | Browser viewing interface (password: secret) |
### Default Credentials
- VNC Password: `secret` (configurable via `SE_VNC_PASSWORD`)
### Volumes
- `selenium_downloads`: Browser downloads directory (`/home/seluser/Downloads`)
## Configuration
### Environment Variables
All configuration can be customized via the `.env` file:
```bash
# Copy the example configuration
cp .env.example .env
# Edit the configuration
nano .env
```
Key configurations:
| Variable | Default | Description |
| ----------------------------- | ---------------- | --------------------------------------------------- |
| `SELENIUM_VERSION` | `144.0-20260120` | Docker image tag (Chrome version + date) |
| `SELENIUM_SHM_SIZE` | `2g` | Shared memory size (required for browser stability) |
| `SELENIUM_GRID_PORT_OVERRIDE` | `4444` | Grid HTTP endpoint port |
| `SELENIUM_VNC_PORT_OVERRIDE` | `7900` | noVNC viewer port |
| `SE_SCREEN_WIDTH` | `1920` | Browser screen width |
| `SE_SCREEN_HEIGHT` | `1080` | Browser screen height |
| `SE_NODE_MAX_SESSIONS` | `1` | Max concurrent sessions per container |
| `SE_NODE_SESSION_TIMEOUT` | `300` | Session timeout in seconds |
For a complete list of environment variables, see the [Selenium Docker documentation](https://github.com/SeleniumHQ/docker-selenium/blob/trunk/ENV_VARIABLES.md).
## Usage
### Basic WebDriver Test (Python)
```python
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
# Configure Chrome options
options = Options()
# Connect to Selenium Grid
driver = webdriver.Remote(
command_executor='http://localhost:4444',
options=options
)
# Run your test
driver.get('https://www.selenium.dev/')
print(driver.title)
# Clean up
driver.quit()
```
### Basic WebDriver Test (Node.js)
```javascript
const { Builder } = require('selenium-webdriver');
const chrome = require('selenium-webdriver/chrome');
(async function example() {
let driver = await new Builder()
.forBrowser('chrome')
.usingServer('http://localhost:4444')
.build();
try {
await driver.get('https://www.selenium.dev/');
console.log(await driver.getTitle());
} finally {
await driver.quit();
}
})();
```
### Viewing Browser Sessions
You can watch tests execute in real-time using noVNC:
1. Open your browser to `http://localhost:7900/?autoconnect=1&resize=scale&password=secret`
2. The default VNC password is `secret`
3. You'll see the browser session in real-time
Alternatively, use a VNC client to connect to `localhost:5900` (if exposed).
## Advanced Configuration
### Changing Browser Version
To use a specific Chrome version, update the `SELENIUM_VERSION` in your `.env` file:
```bash
# Use Chrome 143.0
SELENIUM_VERSION=143.0-20260120
# Or use a specific Selenium Grid version
SELENIUM_VERSION=144.0-chromedriver-144.0-grid-4.40.0-20260120
```
Visit [Docker Hub](https://hub.docker.com/r/selenium/standalone-chrome/tags) for available versions.
### Increasing Concurrent Sessions
To run multiple concurrent sessions in one container (not recommended for production):
```bash
SE_NODE_MAX_SESSIONS=5
```
**Note:** For better stability, scale containers instead:
```bash
docker compose up -d --scale selenium-chrome=3
```
### Retrieving Downloaded Files
To access files downloaded during tests, mount the downloads directory:
```yaml
volumes:
- ./downloads:/home/seluser/Downloads
```
**Linux users:** Set proper permissions before mounting:
```bash
mkdir -p ./downloads
sudo chown 1200:1201 ./downloads
```
### Running in Headless Mode
For newer Chrome versions (127+), headless mode requires Xvfb:
```bash
SE_START_XVFB=true
```
Then configure headless in your test:
```python
options = Options()
options.add_argument('--headless=new')
```
### Custom Screen Resolution
Adjust screen resolution for your test needs:
```bash
SE_SCREEN_WIDTH=1366
SE_SCREEN_HEIGHT=768
SE_SCREEN_DEPTH=24
SE_SCREEN_DPI=74
```
## Health Check
The container includes a built-in health check that polls the Grid status endpoint every 30 seconds:
```bash
# Check container health
docker compose ps
# Or inspect the health status
docker inspect --format='{{json .State.Health.Status}}' <container-id>
```
## Troubleshooting
### Browser Crashes
If you see errors like "Chrome failed to start" or "invalid argument: can't kill an exited process":
1. **Ensure sufficient shared memory:** The default `2g` should work for most cases
```bash
SELENIUM_SHM_SIZE=2g
```
2. **Check headless mode configuration:** Make sure `SE_START_XVFB=true` if using headless mode with Chrome 127+
### Permission Issues (Linux)
When mounting volumes on Linux, ensure correct permissions:
```bash
# For downloads directory
mkdir -p ./downloads
sudo chown 1200:1201 ./downloads
# Check user/group IDs in container
docker compose exec selenium-chrome id
```
### Resource Constraints
If tests are slow or containers are being OOM killed:
```bash
# Increase resource limits
SELENIUM_CPU_LIMIT=4.0
SELENIUM_MEMORY_LIMIT=4G
```
### VNC Connection Issues
If you can't connect to VNC:
1. Check that port 7900 is not in use
2. Verify the VNC password is correct (default: `secret`)
3. Try disabling VNC authentication: `SE_VNC_NO_PASSWORD=true`
## Multi-Browser Support
For running multiple browser types (Chrome, Firefox, Edge), consider using:
- **Hub & Nodes architecture:** See `docker-compose-grid.yaml` example
- **Dynamic Grid:** Automatically spawns containers on demand
- **Selenium Grid 4:** Full distributed mode with Router, Distributor, etc.
## Additional Resources
- [Selenium Documentation](https://www.selenium.dev/documentation/)
- [Docker Selenium GitHub](https://github.com/SeleniumHQ/docker-selenium)
- [Selenium Grid Configuration](https://www.selenium.dev/documentation/grid/)
- [Environment Variables Reference](https://github.com/SeleniumHQ/docker-selenium/blob/trunk/ENV_VARIABLES.md)
## Security Notes
- **VNC Password:** Change the default `secret` password in production
- **Network Exposure:** Do not expose Selenium Grid directly to the internet
- **Resource Limits:** Always set CPU and memory limits to prevent resource exhaustion
- **User Permissions:** Selenium runs as non-root user `seluser` (UID 1200, GID 1201)
## License
This configuration is provided under the Apache License 2.0, following the Selenium project's licensing.
The Selenium Docker images are maintained by the SeleniumHQ team and community contributors.

281
src/selenium/README.zh.md Normal file
View File

@@ -0,0 +1,281 @@
# Selenium Standalone Chrome
[![Docker Image](https://img.shields.io/docker/v/selenium/standalone-chrome?sort=semver)](https://hub.docker.com/r/selenium/standalone-chrome)
[![Docker Pulls](https://img.shields.io/docker/pulls/selenium/standalone-chrome)](https://hub.docker.com/r/selenium/standalone-chrome)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/SeleniumHQ/docker-selenium/blob/trunk/LICENSE.md)
Selenium Grid 独立模式,配备 Chrome 浏览器,用于大规模浏览器自动化。
## 快速开始
```bash
# 启动服务
docker compose up -d
# 验证服务运行状态
docker compose ps
# 查看日志
docker compose logs -f
# 停止服务
docker compose down
```
## 服务信息
### 端口
| 端口 | 服务 | 说明 |
| ---- | ------------- | ------------------------------ |
| 4444 | Selenium Grid | WebDriver HTTP 端点 |
| 7900 | noVNC | 浏览器查看界面密码secret |
### 默认凭据
- VNC 密码:`secret`(可通过 `SE_VNC_PASSWORD` 配置)
### 数据卷
- `selenium_downloads`:浏览器下载目录(`/home/seluser/Downloads`
## 配置说明
### 环境变量
所有配置都可以通过 `.env` 文件自定义:
```bash
# 复制示例配置文件
cp .env.example .env
# 编辑配置
nano .env
```
主要配置:
| 变量 | 默认值 | 说明 |
| ----------------------------- | ---------------- | ------------------------------------- |
| `SELENIUM_VERSION` | `144.0-20260120` | Docker 镜像标签Chrome 版本 + 日期) |
| `SELENIUM_SHM_SIZE` | `2g` | 共享内存大小(浏览器稳定性所需) |
| `SELENIUM_GRID_PORT_OVERRIDE` | `4444` | Grid HTTP 端点端口 |
| `SELENIUM_VNC_PORT_OVERRIDE` | `7900` | noVNC 查看器端口 |
| `SE_SCREEN_WIDTH` | `1920` | 浏览器屏幕宽度 |
| `SE_SCREEN_HEIGHT` | `1080` | 浏览器屏幕高度 |
| `SE_NODE_MAX_SESSIONS` | `1` | 每个容器最大并发会话数 |
| `SE_NODE_SESSION_TIMEOUT` | `300` | 会话超时时间(秒) |
完整的环境变量列表请参考 [Selenium Docker 文档](https://github.com/SeleniumHQ/docker-selenium/blob/trunk/ENV_VARIABLES.md)。
## 使用方法
### 基础 WebDriver 测试Python
```python
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
# 配置 Chrome 选项
options = Options()
# 连接到 Selenium Grid
driver = webdriver.Remote(
command_executor='http://localhost:4444',
options=options
)
# 运行测试
driver.get('https://www.selenium.dev/')
print(driver.title)
# 清理资源
driver.quit()
```
### 基础 WebDriver 测试Node.js
```javascript
const { Builder } = require('selenium-webdriver');
const chrome = require('selenium-webdriver/chrome');
(async function example() {
let driver = await new Builder()
.forBrowser('chrome')
.usingServer('http://localhost:4444')
.build();
try {
await driver.get('https://www.selenium.dev/');
console.log(await driver.getTitle());
} finally {
await driver.quit();
}
})();
```
### 查看浏览器会话
您可以使用 noVNC 实时查看测试执行过程:
1. 在浏览器中打开 `http://localhost:7900/?autoconnect=1&resize=scale&password=secret`
2. 默认 VNC 密码是 `secret`
3. 您将实时看到浏览器会话
或者,使用 VNC 客户端连接到 `localhost:5900`(如果已暴露)。
## 高级配置
### 更改浏览器版本
要使用特定的 Chrome 版本,请在 `.env` 文件中更新 `SELENIUM_VERSION`
```bash
# 使用 Chrome 143.0
SELENIUM_VERSION=143.0-20260120
# 或使用特定的 Selenium Grid 版本
SELENIUM_VERSION=144.0-chromedriver-144.0-grid-4.40.0-20260120
```
访问 [Docker Hub](https://hub.docker.com/r/selenium/standalone-chrome/tags) 查看可用版本。
### 增加并发会话数
在单个容器中运行多个并发会话(生产环境不推荐):
```bash
SE_NODE_MAX_SESSIONS=5
```
**注意:** 为了更好的稳定性,建议通过扩展容器来实现:
```bash
docker compose up -d --scale selenium-chrome=3
```
### 获取下载的文件
要访问测试期间下载的文件,挂载下载目录:
```yaml
volumes:
- ./downloads:/home/seluser/Downloads
```
**Linux 用户:** 挂载前设置正确的权限:
```bash
mkdir -p ./downloads
sudo chown 1200:1201 ./downloads
```
### 无头模式运行
对于新版 Chrome127+),无头模式需要 Xvfb
```bash
SE_START_XVFB=true
```
然后在测试中配置无头模式:
```python
options = Options()
options.add_argument('--headless=new')
```
### 自定义屏幕分辨率
根据测试需求调整屏幕分辨率:
```bash
SE_SCREEN_WIDTH=1366
SE_SCREEN_HEIGHT=768
SE_SCREEN_DEPTH=24
SE_SCREEN_DPI=74
```
## 健康检查
容器包含内置的健康检查,每 30 秒轮询 Grid 状态端点:
```bash
# 检查容器健康状态
docker compose ps
# 或检查健康状态详情
docker inspect --format='{{json .State.Health.Status}}' <container-id>
```
## 故障排除
### 浏览器崩溃
如果看到 "Chrome failed to start" 或 "invalid argument: can't kill an exited process" 等错误:
1. **确保足够的共享内存:** 默认的 `2g` 应该适用于大多数情况
```bash
SELENIUM_SHM_SIZE=2g
```
2. **检查无头模式配置:** 如果在 Chrome 127+ 中使用无头模式,请确保 `SE_START_XVFB=true`
### 权限问题Linux
在 Linux 上挂载卷时,确保正确的权限:
```bash
# 对于下载目录
mkdir -p ./downloads
sudo chown 1200:1201 ./downloads
# 检查容器中的用户/组 ID
docker compose exec selenium-chrome id
```
### 资源限制
如果测试缓慢或容器被 OOM 终止:
```bash
# 增加资源限制
SELENIUM_CPU_LIMIT=4.0
SELENIUM_MEMORY_LIMIT=4G
```
### VNC 连接问题
如果无法连接到 VNC
1. 检查端口 7900 是否被占用
2. 验证 VNC 密码是否正确(默认:`secret`
3. 尝试禁用 VNC 认证:`SE_VNC_NO_PASSWORD=true`
## 多浏览器支持
要运行多种浏览器类型Chrome、Firefox、Edge请考虑使用
- **Hub & Nodes 架构:** 参见 `docker-compose-grid.yaml` 示例
- **动态 Grid** 按需自动生成容器
- **Selenium Grid 4** 完整的分布式模式,包含 Router、Distributor 等
## 其他资源
- [Selenium 文档](https://www.selenium.dev/documentation/)
- [Docker Selenium GitHub](https://github.com/SeleniumHQ/docker-selenium)
- [Selenium Grid 配置](https://www.selenium.dev/documentation/grid/)
- [环境变量参考](https://github.com/SeleniumHQ/docker-selenium/blob/trunk/ENV_VARIABLES.md)
## 安全注意事项
- **VNC 密码:** 生产环境中更改默认的 `secret` 密码
- **网络暴露:** 不要将 Selenium Grid 直接暴露到互联网
- **资源限制:** 始终设置 CPU 和内存限制以防止资源耗尽
- **用户权限:** Selenium 以非 root 用户 `seluser` 运行UID 1200GID 1201
## 许可证
本配置遵循 Apache License 2.0 提供,与 Selenium 项目的许可保持一致。
Selenium Docker 镜像由 SeleniumHQ 团队和社区贡献者维护。

View File

@@ -0,0 +1,50 @@
# Selenium Standalone with Chrome
# This configuration runs Selenium Grid in Standalone mode with Chrome browser
# Suitable for single-browser automation needs
x-defaults: &defaults
restart: unless-stopped
logging:
driver: json-file
options:
max-size: 100m
max-file: "3"
services:
selenium-chrome:
<<: *defaults
image: ${GLOBAL_REGISTRY:-}selenium/standalone-chrome:${SELENIUM_VERSION:-144.0-20260120}
shm_size: ${SELENIUM_SHM_SIZE:-2g}
ports:
- "${SELENIUM_GRID_PORT_OVERRIDE:-4444}:4444"
- "${SELENIUM_VNC_PORT_OVERRIDE:-7900}:7900"
volumes:
- selenium_downloads:/home/seluser/Downloads
environment:
- TZ=${TZ:-UTC}
- SE_SCREEN_WIDTH=${SE_SCREEN_WIDTH:-1920}
- SE_SCREEN_HEIGHT=${SE_SCREEN_HEIGHT:-1080}
- SE_SCREEN_DEPTH=${SE_SCREEN_DEPTH:-24}
- SE_SCREEN_DPI=${SE_SCREEN_DPI:-96}
- SE_VNC_PASSWORD=${SE_VNC_PASSWORD:-secret}
- SE_NODE_MAX_SESSIONS=${SE_NODE_MAX_SESSIONS:-1}
- SE_NODE_SESSION_TIMEOUT=${SE_NODE_SESSION_TIMEOUT:-300}
- SE_START_XVFB=${SE_START_XVFB:-true}
healthcheck:
test:
["CMD", "/opt/bin/check-grid.sh", "--host", "0.0.0.0", "--port", "4444"]
interval: 30s
timeout: 10s
retries: 3
start_period: 30s
deploy:
resources:
limits:
cpus: ${SELENIUM_CPU_LIMIT:-2.0}
memory: ${SELENIUM_MEMORY_LIMIT:-2G}
reservations:
cpus: ${SELENIUM_CPU_RESERVATION:-1.0}
memory: ${SELENIUM_MEMORY_RESERVATION:-1G}
volumes:
selenium_downloads: